
Open-set Recognition and its Applications in
Computer Vision

by

Jun Cen

A Thesis Submitted to

The Hong Kong University of Science and Technology

in Partial Fulfilment of the Requirements for

the Degree of Doctor of Philosophy

in Individualized Interdisciplinary Program

Robotics and Autonomous Systems

April 2024, Hong Kong

i



Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis to

other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce

the thesis by photocopying or by other means, in total or in part, at the request of other institu-

tions or individuals for the purpose of scholarly research.

Jun Cen

3 April 2024

ii



Open-set Recognition and its Applications in
Computer Vision

by

Jun Cen

This is to certify that I have examined the above PhD thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Prof. Qifeng Chen, Thesis Supervisor

Prof. Michael Yu Wang, Thesis Co-supervisor

Prof. Huamin Qu, Head of Department

Division of Emerging Interdisciplinary Areas

3 April 2024

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest gratitude to my advisors, Prof. Qifeng

Chen and Prof. Michael Yu Wang. It was their generosity that gave me the invaluable oppor-

tunity to pursue my doctoral studies at HKUST. They have provided an exceptionally tolerant,

cutting-edge, and harmonious research environment, which has been instrumental in enabling

me to achieve the research accomplishments I have attained to date.

I would like to express my gratitude to the members of my thesis defense committee, in-

cluding Prof. Ping Tan, Prof. Jun Ma, and Prof. Haoang Li. I sincerely appreciate their detailed

review of my materials and the constructive suggestions they offered during my defense, which

have significantly contributed to enhancing the quality of my research.

I would also like to express my sincere thanks to the mentors with whom I had closely

research collaboration, including Ziwei Liu, Jianguo Zhang, Chenfei Wu, Nan Duan, Shiwei

Zhang, and Deli Zhao. They have expanded my research horizons and dedicated a considerable

amount of time to guide me on how to conduct better research. Their insights and support have

been invaluable to my academic journey.

Additionally, I am also grateful to my colleagues, whose assistance went beyond academic

support to include daily companionship and encouragement. They include Lei Zhang, Jianghua

Duan, Haoran Song, Zicheng Kan, Alexander Yu Tse, Qingping Ma, Shuai Liu, Cho Hei Pang,

Yipai Du, Di Luan, Kun Zhang, Qi Wang, Haokun Wang, Junhao Cai, Qicheng Wang, Guanlan

Zhang, Muleilan Pei, Mingpei Cang, Xiang Wang, Zhiwu Qing, Hangjie Yuan, Jingkang Yang,

Kewei Wang, Yizheng Wu, Xingyi Li, Jinglong Yang, Wenjian Huang, Lu Huo, and Li Liu.

Lastly, I wish to extend my heartfelt appreciation to my parents, Jianhua Cen and Hairong

Lyu, as well as to my girlfriend, Yixuan Pei. Their love, patience, and understanding have been

the bedrock of my Ph.D. journey, providing me with the courage and motivation to persevere

and overcome all obstacles. Their unwavering support has been my constant source of strength

throughout this endeavor.

iv



TABLE OF CONTENTS

Title Page i

Authorization ii

Signature Page iii

Acknowledgements iv

Table of Contents v

List of Figures viii

List of Tables xi

Abstract xiv

Chapter 1 Introduction 1

1.1 Background 1

1.2 Dissertation Overview 2

Chapter 2 Related Work 4

2.1 Open-set Recognition Method 4

2.1.1 Classification-based method 4

2.1.2 Distance-based method 5

2.1.3 Reconstruction-based method 6

2.2 Open-set Recognition with Outlier Exposure 7

2.2.1 Real outlier data 7

2.2.2 Generated outlier data 7

2.3 Open-set Recognition Applications 8

2.3.1 Open-set semantic segmentation 8

2.3.2 Open-set action recognition 9

Chapter 3 Open-set 3D Semantic Segmentation via Redundancy Classifiers 10

v



3.1 Introduction 10

3.2 Open-world Semantic Segmentation 12

3.3 Redundancy Classifier Framework (REAL) 13

3.3.1 Open-set Semantic Segmentation (OSeg) 14

3.3.2 Incremental Learning (IL) 16

3.4 Experiments 18

3.4.1 Open-world Evaluation Protocol 18

3.4.2 Open-set Semantic Segmentation (OSeg) 18

3.4.3 Incremental Learning (IL) 20

3.4.4 Open-world Semantic Segmentation 23

3.5 Conclusion 23

Chapter 4 Open-set Action Recognition via Prototypical Similarity Learning 24

4.1 Introduction 24

4.2 Information Analysis in OSAR 26

4.2.1 Prototypical Learning 26

4.2.2 Information Analysis of OSAR 27

4.2.3 CS and IS Information Behavior under C.E. 27

4.2.4 IB Theory Analysis for CS and IS Information 29

4.2.5 Enlarge CS and IS Information for OSAR 30

4.3 Methods 31

4.3.1 Prototypical Similarity Learning 31

4.3.2 Video Shuffling for PSL 32

4.3.3 Uncertainty Score 32

4.4 Experiments 33

4.4.1 Evaluation Results 34

4.4.2 Ablation Study 35

4.4.3 Discussion 38

4.5 ID and OOD uncertainty distribution 45

4.6 Conclusion 46

Chapter 5 Towards Unified Open-set Recognition 48

5.1 Introduction 48

5.2 Towards Unified Open-set Recognition 50

5.3 OSR Approaches for UOSR 52

vi



5.4 Pre-training and Outlier Exposure 61

5.5 Few-shot Unified Open-set Recognition 68

Chapter 6 Conclusion and Future Work 76

6.1 Conclusion 76

6.2 Future Work 77

References 78

Appendix A List of Publications 91

vii



LIST OF FIGURES

Figure 1.1 Open-set recognition in semantic segmentation. 2

Figure 3.1 Closed-set model ℳ𝑐 wrongly assigns the labels of old classes to OOD
objects (A: construction vehicle is classified as the manmade, truck, and
even pedestrian; B: barrier is classified as the road, manmade and other
flat; C: traffic cone is classified as the manmade). After open-set seman-
tic segmentation (OSeg) task, the open-set model ℳ𝑜 can identify the
OOD objects and assign the label unknown for them. After incremental
learning (IL) task, the model ℳ𝑖 can classify both old and novel classes. 11

Figure 3.2 Redundancy classifier framework (REAL). Closed-set model ℳ𝑐 can
only output logits for old classes 𝑦𝑜𝑙𝑑 . Redundancy Classifiers 𝑔𝑟𝑒 are
added on top of the original framework in our REAL. All 𝑔𝑟𝑒 in ℳ𝑜 are
used to output the scores 𝑦𝑢𝑘 for the unknown class. After the IL task,
part of 𝑔𝑟𝑒 are used to output logits for the newly introduced classes 𝑦𝑛𝑣,
while the remaining are still for the unknown class 𝑦𝑢𝑘. 13

Figure 3.3 Distribution of scores of the unknown class for Maximum Softmax Prob-
ability (MSP) and our REAL method. The scores of the unknown class
for novel classes are low in MSP (a), meaning the closed-set prediction
classifies novel classes as old classes with high confidence. 15

Figure 3.4 Pseudo labels generating process for incremental learning. Ground truth
(a) only contains the label of the novel class (A: other-vehicle). So we
combine the prediction results of ℳ𝑜 (b) to generate the pseudo labels
(c). Then we resize objects of old classes as the synthesized objects in
(d) (B: resized car). 16

Figure 3.5 Qualitative results of OSeg task. Novel classes are in pink (other-vehicle
in SemanticKITTI (top), and construction-vehicle and barrier in nuScenes
(bottom)). The results show that our method has a better performance in
distinguishing the novel class from old classes than all the baselines. Best
viewed in zoom. 19

Figure 3.6 Ablation experiments of coefficient 𝜆𝑠𝑦𝑛, 𝜆𝑐𝑎𝑙 and number of redundancy
classifiers 𝑟 for OSeg task on SemanticKITTI. 20

Figure 3.7 Incremental learning results for nuScenes validation set. Introduced class:
1: barrier; 2: construction-vehicle; 3: traffic-cone; 4: trailer. 22

Figure 3.8 Qualitative results of open-world semantic segmentation. GT: ground
truth. In (b) GT-basewe set the novel classes𝒦𝑛 in pink (A: construction-
vehicle; B: barrier; C: traffic-cone). (c) Closed-set prediction classifies
novel objects as old classes. (d) Open-set prediction can identify these
novel objects as unknown. We gradually introduce the labels of barrier,
construction-vehicle, and traffic-cone in (e) REAL1, (f) REAL2, and (g)
REAL3, so they can classify these novel classes one by one. (h) GT-all
contains ground truth of all classes. 22

viii



Figure 4.1 (a) Richer semantic features brought by the pretraining can significantly
improve the open-set performance. (b) Information in the feature is di-
vided into IS and CS information. 𝑠4 can be identified as OOD since it
has distinct IS information (IS bars in different colors) with 𝑠1 and 𝑠2,
while 𝑠5 has distinct CS information (CS bars in different colors) with
all ID samples so it may be OOD. Our PSL aims to learn more IS and
CS information (bars in longer lengths) than Cross-Entropy (C.E.). (c)
Both enlarged IS and CS information boosts the open-set performance.
(d) Our PSL achieves the best OSAR performance. 25

Figure 4.2 The neural network (NN) can only extract limited representations 𝑧𝐼𝐷 of
the ID sample 𝑥𝐼𝐷 for the current task 𝑌 (predict the closed-set label),
which is not diverse enough for the task 𝑇 (distinguish OOD samples), as
green and orange areas are small in (a). In our PSL, we encourage the NN
to learn a more diverse representation so that more IS and CS information
about 𝑇 are contained. 28

Figure 4.3 (a) C.E. encourages the sample feature 𝑧 to be exactly same with the cor-
responding prototype 𝑘𝑖. (b) Our PSL encourages the similarity between
𝑧 and 𝑘𝑖, features of shuffled sample𝑄𝑠ℎ𝑢𝑓 and other samples in the same
class 𝑄𝑠𝑐 to have a similarity less than 1. 30

Figure 4.4 The uncertainty distribution of ID and OOD samples of (a) Softmax, (b)
DEAR, (c) BNN SVI and (d) our PSL method. 37

Figure 4.5 Feature representation visualization of cross-entropy and our PSLmethod.
OOD samples are in black and ID samples are in other colors. In the red,
blue and green circles, it is clear that OOD samples distribute at the edge
of ID samples in our PSL, while greatly overlap with each other in the
cross-entropy method. 38

Figure 4.6 Mean similarity and variance analysis for CT terms. 40
Figure 4.7 (a) chew and smile are OOD samples from HMDB51, and ApplyEye-

Makeup and ApplyLipstick are ID samples from UCF101. (b-d) Uncer-
tainty distribution of each class in HMDB51. Class 1: chew, 2: smile, 3:
golf, 4: shoot bow. Classes 1 and 2 are OOD while 3 and 4 are ID. 41

Figure 4.8 Ablation study of similarity 𝑠 and feature dimension 𝑑. 42
Figure 4.9 Singular value spectrum on HMDB51 (OOD) under different training

conditions (a)-(c) and hyper-parameter 𝑠 (d). (c) contains the top 20 sin-
gular values in (b). 43

Figure 4.10 t-SNE visualization of PSL. 43
Figure 4.11 t-SNE visualization of PSL with 𝑄𝑛𝑠. 44
Figure 4.12 t-SNE visualization of PSL with 𝑄𝑛𝑠, 𝑄𝑠𝑐 . 44
Figure 4.13 t-SNE visualization of PSL with 𝑄𝑛𝑠, 𝑄𝑠𝑐 , 𝑄𝑠ℎ𝑢𝑓 . 45
Figure 4.14 Uncertainty distribution on HMDB51 (OOD) w/o K400 pretrain. 46
Figure 4.15 Uncertainty distribution on HMDB51 (OOD) w/ K400 pretrain. 46
Figure 4.16 Uncertainty distribution on MiT-v2 (OOD) w/o K400 pretrain. 47
Figure 4.17 Uncertainty distribution on MiT-v2 (OOD) w/ K400 pretrain. 47

ix



Figure 5.1 (a) shows that the UOSR performance is significantly better than OSR
performance for the same method, which illustrates the uncertainty dis-
tribution of these OSR methods is actually closer to the expectation of
UOSR than OSR. (b) shows the UOSR performance under different set-
tings and the skeleton of this paper. Results are based on the ResNet50
backbone. CIFAR100 and TinyImageNet are ID and OOD datasets, re-
spectively. (TS: Train from Scratch. TP: Train from Pre-training. OE:
Outlier Exposure. FS: Few-shot.) 49

Figure 5.2 We provide 5 samples in (a)-(e), where we keep the confidence distribu-
tion of InC and change the confidence distribution of InW samples. The
evaluation metrics of UOSR are AUROC and AUPR, and ECE is for the
MC. 52

Figure 5.3 (a) and (b) show the relation between UOSR and OSR performance in
the image and video domain under ResNet50 and TSM backbones. Dif-
ferent color indicates different OOD datasets. The red-dotted diagonal
is where UOSR has the same AUROC as OSR. Green arrows show the
performance gap between UOSR and OSR for the same method. 53

Figure 5.4 (a) and (b) are conducted using the VGG13 and I3D backbone in the
image and video domain respectively. ID datasets are CIFAR100 and
UCF101 for (a) and (b), and OOD datasets are shown with different colors. 54

Figure 5.5 (a) and (b) are the SoftMax and ODIN methods in the image domain,
while (c) and (d) are the SoftMax and DEAR methods in the video do-
main. OODdatasets are TinyImageNet for the image domain andHMDB51
for the video domain. 55

Figure 5.6 (a) and (b) are t-SNE visualization results of the whole test dataset and
10 classes. 56

Figure 5.7 Similarity between with training samples of each class. 56
Figure 5.8 (a): 𝑥𝑤 is close to 𝑥𝑐 in (𝑠, 𝑡) space, but 𝑓(𝑥𝑤) is close to 𝑓(𝑥𝑜) in uncer-

tainty space; (b) 𝑥𝑤 is close to 𝑥𝑐 in (𝑠, 𝑡) space, and 𝑓(𝑥𝑤) is also close
to 𝑓(𝑥𝑐) in uncertainty space. 58

Figure 5.9 Uncertainty distribution under different temperatures𝑇 without pre-training. 60
Figure 5.10 Uncertainty distribution under different temperature 𝑇 with pre-training. 61
Figure 5.11 (a) and (b) plot the InC/InW and InC/OOD discrimination in the image

and video domain. We set the SoftMax method training from scratch
as the original point and divide the coordinate system into 4 quadrants
(Q1 to Q4). (TS: Train from Scratch. TP: Train from Pre-training. OE:
Outlier Exposure.) 68

Figure 5.12 Uncertainty scores of each test sample (a) and uncertainty distribution of
SoftMax (b), FS-KNN (c), and FS-KNNS (d). 71

Figure 5.13 UOSR performance under all settings of TSM backbone in the video do-
main. OOD dataset is HMDB51. 74

Figure 5.14 Ablation study of 𝐾 used in FS-KNN. The backbone is ResNet50. 75
Figure 5.15 Uncertainty distribution of ̂𝑢𝑓𝑠−𝑘𝑛𝑛𝑠. InC-train samples have distinct un-

certainty distribution with InC-test samples, but OOD reference samples
share similar uncertainty distribution with OOD test samples. a to e cor-
respond to the 𝜆𝑘𝑛𝑛𝑠 when 𝛽 = 1.5, 1, 0.5, 0, −0.5 in Eq. 5.6. 75

Figure 5.16 Ablation study of 𝛽 and 𝛼 in Eq. 5.5 and Eq. 5.6. 75

x



LIST OF TABLES

Table 3.1 Benchmark of open-set semantic segmentation for LIDAR point clouds.

Results are evaluated on the validation set. 19

Table 3.2 Ablation study results of ℒ𝑐𝑎𝑙 and ℒ𝑠𝑦𝑛 for OSeg task on SemanticKITTI. 20

Table 3.3 Incremental learning results on SemanticKITTI 18 + 1 (other-vehicle)

setting. 21

Table 3.4 Incremental learning results on nuScenes for 12 + 4 (barrier, construction-

vehicle, traffic-cone, and trailer) setting. 21

Table 4.1 Overlapping classes in HMDB51 and UCF101. 33

Table 4.2 Comparisonwith state-of-the-art methods onHMDB51 andMiTv2 (OOD)

using TSM backbone. Acc. refers to closed-set accuracy. AUROC,

AUPR and FPR95 are open-set metrics. Best results are in bold and sec-

ond best results in italic. DEAR and our methods contain video-specific

operation. 34

Table 4.3 OSAR performance under I3D backbone. 35

Table 4.4 OSAR performance under SlowFast backbone. 36

Table 4.5 Comparison with different metric learning methods. 39

Table 4.6 Abaltion results of different components in ℒ𝐶𝑇
𝑃 𝑆𝐿. 39

Table 4.7 Ablation study of similarity 𝑠 for 𝑄𝑠ℎ𝑢𝑓 and 𝑄𝑠𝑐 . 40

Table 4.8 Training process analysis when 𝑠 = 0.6 w/o 𝑄𝑠ℎ𝑢𝑓 . 42

Table 5.1 Comparison of uncertainty-related task settings. Cls: Classification. 0

and 1 refer to the corresponding ground truth uncertainty 𝑢, and 𝑢 is not
fixed in MC. 50

Table 5.2 Uncertainty distribution analysis in image domain with ResNet50. OOD

dataset: TinyImageNet. AUROC (%) is reported. 54

Table 5.3 Uncertainty distribution analysis in video domain with TSM backbone.

OOD dataset is HMDB51. AUROC (%) is reported. 55

xi



Table 5.4 We provide the feature similarity of InW/InC and InW/OOD, the mean

of uncertainty score, and the AUROC of InW/InC and InW/OOD in this

table. 57

Table 5.5 Unified open-set recognition benchmark in the image domain. All meth-

ods are conducted under the R50 model. ID and OOD Dataset are Tiny-

ImageNet and CIFAR100 respectively. †, ‡,♢ refer to OSR-based, SP-

based, UOSR-based methods. Pre-training weights are used. 59

Table 5.6 Relation between closed-set accuracyAcc. (%) and open-set performance.

Aug: Augmentation; Ep: Epoch. AUROC (%) is reported. 59

Table 5.7 UOSR and MC performance under different temperatures 𝑇 . 60

Table 5.8 Unified open-set recognition benchmark in the image domain under the

traditional OSR dataset setting. All methods are conducted under the R50

model. Dataset is TinyImageNet. †, ‡,♢ refer to OSR-based, SP-based,

UOSR-based methods. Pre-training weights are used. 62

Table 5.9 Unified open-set recognition benchmark of CUB-200-2011 dataset. All

methods are conducted under the R50 model. †, ‡,♢ refer to OSR-based,

SP-based, UOSR-basedmethods. Pre-trainingweights are used. EASY/HARD

63

Table 5.10 Unified open-set recognition benchmark of Fine-Grained Visual Classi-

fication of Aircraft (FGVC-Aircraft) dataset. All methods are conducted

under the R50model. †, ‡,♢ refer to OSR-based, SP-based, UOSR-based

methods. Pre-training weights are used. EASY/HARD 64

Table 5.11 UOSR benchmark in the image domain under the ResNet50 model. ID

dataset is CIFAR100 while the OOD dataset is TinyImageNet. †, ‡,♢
refer to OSR-based, SP-based, UOSR-based methods. OD: Outlier Data.

N/G/R means No/Generated/Real OD. AUROC (%), AURC (×103) and

Acc. (%) are reported. 65

Table 5.12 UOSR benchmark in the video domain under the TSMmodel. ID dataset

is UCF101 while the OOD dataset is HMDB51. †, ‡,♢ refer to OSR-

based, SP-based, UOSR-based methods. OD: Outlier Data. AUROC

(%), AURC (×103) and Acc. (%) are reported. 66

xii



Table 5.13 Unified open-set recognition benchmark in the image domain. All meth-

ods are conducted under the VGG13 model. ID dataset is CIFAR100

while OOD dataset is TinyImageNet. †, ‡,♢ refer to OSR-based, SP-

based, UOSR-based methods. OD: use Outlier Data in training. 67

Table 5.14 Uncertainty distribution analysis in image domain with ResNet50. Pre-

training is not used. OOD dataset: TinyImageNet. AUROC (%) is re-

ported. 69

Table 5.15 UOSR and OSR performance under noisy outlier data. ID dataset is CI-

FAR100 and outlier dataset is 300K Random Images. OOD dataset is

TinyImageNet. Experiments are conducted with ResNet18 backbone. 70

Table 5.16 Results of few-shot UOSR in the image domain. Model is ResNet50 with

pre-training. ID and OOD datasets are CIFAR100 and TinyImageNet.

AUROC (%) and AURC (×103) are reported. 71

Table 5.17 Results of few-shot UOSR in the image domain. Model is VGG13 with

pre-training. ID and OOD datasets are CIFAR100 and TinyImageNet

respectively. 72

Table 5.18 Results of few-shot UOSR in the video domain. Model is TSM with pre-

training. ID and OOD datasets are UCF101 and HMDB51. AUROC (%)

and AURC (×103) are reported. 73

xiii



Open-set Recognition and its Applications in
Computer Vision

by Jun Cen

Division of Emerging Interdisciplinary Areas

The Hong Kong University of Science and Technology

Abstract

Current deep learning models are trained to fit the training set distribution. Despite the re-

markable advancements attributable to cutting-edge architectural designs, these models cannot

inference for out-of-distribution (OOD) samples—instances that diverge from the training set’s

scope. Unlike humans, who can naturally recognize something that is unknown for themselves,

current deep learning models lack this capability. Since it is hard to include all objects of the

open world into the training set, how to design an open-set recognition algorithm to detect the

OOD samples and reject them is essential. This thesis focuses on studying the open-set recog-

nition and its application in computer vision. Initially, we introduce an open-set 3D semantic

segmentation system for the autonomous driving applications. We aim to detect anomalous ob-

jects that are not common on the road and not in the training set, as such outliers are critical for

the safety of autonomous driving systems. Subsequently, we analyze the open-set problem from

the Information Bottleneck perspective, and propose a prototypical similarity learning algorithm

to learn more class-specific and instance-specific information for better open-set performance.

Ultimately, we deeply analyze a new setting called unified open-set recognition, in which both

OOD samples and in-distribution but wrongly-classified samples are supposed to be detected,

since the model’s predictions of them are wrong.
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CHAPTER 1

INTRODUCTION

1.1 Background

Current deep learningmodels in the computer vision area could achieve remarkable performance

on various of tasks, including image classification, object detection, semantic segmentation, etc.

The model is first trained on the training set with a loss function, and the model’s ability for the

specific task is gradually improved with the decreasing of loss. If the test set shares the similar

pattern with the training set, which is called closed-set recognition, the trainedmodel will behave

well since it is already fitted on the training set.

However, it is difficult to guarantee that the distribution of the test set is similar to the training

set in the real-world applications. For example, the autonomous driving dataset usually contains

common classes like the car, bus, truck, person, bicycle, etc. The model trained on such dataset

is capable to recognize these common classes. However, there are some rare classes that may

not in the training set, such as the cone, construction vehicle, animals on the road, etc. These

objects are also significant for the safety of the autonomous cars, but they cannot be recognized

since they are not in the training set. The classes that are not included in the training set are

called out-of-distribution (OOD) classes, and in-distribution (ID) classes refer to the classes in

the training set. Open-set recognition is to detect OOD samples and meanwhile give the correct

prediction results for ID samples.

The key of open-set recognition is uncertainty estimation. Samples whose uncertainty scores

𝑢 are higher than a threshold 𝜆 are regarded as OOD samples, and vice versa.

𝑌 =
⎧⎪
⎨
⎪⎩

𝑂𝑂𝐷 𝑢 > 𝜆

𝐼𝐷 𝑢 ≤ 𝜆
. (1.1)

Fig. 1.1 gives an example of open-set semantic segmentation in the autonomous driving

scenario, in which we include the results of three uncertainty estimation methods, i.e., baseline

MSP [1] and our proposed EDS and EDS+MMSP [2]. Several OOD objects are shown in the

synthetic images and real images, like helicopter, construction vehicle, duck and toy car. The

1



Input GT Prediction MSP EDS EDS+MMSP

Figure 1.1: Open-set recognition in semantic segmentation.

traditional closed-set segmentation model classifies the OOD classes into one of the ID classes,

which is wrong and might cause traffic disasters. In contrast, the open-set recognition model

estimates the uncertainty for each pixel to identify the OOD objects.

This thesis focuses on the open-set recognition and its applications. We provide analysis

of the open-set recognition problem from different perspectives, including the network design,

loss function design, problem setting, dataset setting, and different applications.

1.2 Dissertation Overview

This thesis is organized as follows.

In Chapter 2, we give a comprehensive related work of the open-set recognition. We discuss

the classification-based methods, distance-based methods, and reconstruction-based methods.

We also include the discussion of open-set recognition with outlier exposure, which contains

using real outlier data and generated outlier data.

In Chapter 3, we analyze the open-set 3D semantic segmentation task. We first define the

open-world recognition problem in LIDAR semantic segmentation. The open-world segmen-

tation includes the open-set segmentation to identify OOD objects and incremental learning to

learn OOD classes without forgetting ID classes. We introduce a redundancy classifier frame-

work for both open-set recognition and incremental learning tasks.

In Chapter 4, we first analyze the open-set recognition problem through the Information

Bottleneck theory, and find that the open-set performance is related to the class-specific and

instance-specific information. Thenwe introduce the prototypical similarity learning framework

to enhance the class-specific and instance-specific information for better closed-set and open-set

2



performance.

In Chapter 5, we deeply analyze a new setting called unified open-set recognition. Unlike

open-set recognition that only needs to detect OOD samples, unified open-set recognition aims

to detect both OOD samples and ID but wrongly-classified samples since the prediction results

of them are wrong. We find that OOD samples and ID but wrongly-classified samples have

the similar uncertainty distribution. Besides, we explore the effect of outlier exposure and pre-

training under the unified open-set recognition setting. Ultimately, we propose a method under

the few-shot setting that fully utilizes the given OOD templates during inference.

In Chapter 6, we make a conclusion of this thesis and discuss the future direction of open-set

recognition.

3



CHAPTER 2

RELATEDWORK

2.1 Open-set Recognition Method

2.1.1 Classification-based method

The baseline of open-set recognition with the deep learning models was proposed in [1]. They

utilized the maximum softmax probability as the confidence score or the additive inverse of the

maximum softmax score as the uncertainty score. Two settings are explored in this work. The

first one is OOD detection, which is to distinguish OOD samples and ID samples. Another one

is mis-classification detection, which is to distinguish ID but wrongly-classified samples and ID

and correctly-classified samples. They show that the maximum softmax probability is a simple

and effective baseline for OOD detection and mis-classification detection.

However, themaximum softmax probability was found to be over-confident, i.e., someOOD

samples also have extremely low uncertainty scores like ID samples [3]. So they proposed to use

the maximum logits value as the uncertainty score for better open-set performance. Based on the

logits value, [4] proposed to use the energy score for OOD detection, which was theoretically

interpreted from a likelihood perspective [5].

ReAct [6] found that a primary factor contributing to the overconfidence problem with OOD

data: the application of BatchNorm [7] statistics, which are estimated from ID data, to OOD

data during testing. This mismatch can lead to abnormally high unit activation logits and, con-

sequently, inflated model outputs. So they proposed to truncate the logits value which is higher

than a threshold, and proven that using the truncated logits for existing uncertainty score func-

tions could further improve the OOD detection performance.

DICE [8] prioritized weights by their level of contribution, selectively employing the most

significant ones to compute the output for OOD detection. Filtering out less relevant signals

demonstrably narrowed the variance of the output for OOD samples, leading to a more distinct

output distribution that is more effectively differentiated from ID samples. Similarly, ASH [9]

also focused on the activation space but employed a divergent approach. It discarded a substan-

tial proportion (for instance, 90%) of the feature representations from an input at a late stage
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based on a top-K selection process. The method then modified the remaining activations (about

10%) through scaling or assigning fixed values, to achieve results that are surprisingly effective.

All methods mentioned above are post-hoc open-set methods, i.e., there is no need to change

the training process and all operations are conducted under the inference stage. Some open-set

recognition methods require to modify the training strategy for better OOD detection [10–18].

For example, LC [19] added another small branch to specifically output the uncertainty score.

To train the neural network to estimate confidence, they guided it towards the correct output

by offering hints when it demonstrates low confidence in its predictions. These hints push the

prediction towards the target distribution through interpolation, and the extent was determined

by the network’s assessed confidence in the accuracy of its prediction.

ODIN [16] introduced a technique of input pre-processing that involves the addition of slight

perturbations, which are derived from the gradients of the input. These perturbations are de-

signed to amplify the softmax score of a given input, thereby strengthening the model’s confi-

dence in its predicted label. It has been observed that these perturbations effectively widen the

disparity between the softmax scores for ID and OOD samples, leading to better OOD detection

performance. G-ODIN [20] was built upon ODIN [16] by concentrating on the neural network’s

intermediate hidden representations to better detect covariate shifts. G-ODIN employed a unique

training goal known as decomposing confidence, along with carefully selected hyperparameters

such as the degree of perturbation on input data for better OOD detection performance.

Bayesian models utilized Bayes’ theorem to encapsulate all forms of uncertainty within the

model [21]. A prime example of this approach is the Bayesian neural network [22], which esti-

mated the model’s epistemic uncertainty by sampling from its posterior distribution using tech-

niques such asMCMC [23], Laplace approximation [24], and variational inference [25]. Despite

their theoretical appeal, limitations such as imprecise predictions and substantial computational

demands have hindered their widespread application [26]. To address these issues, recent ad-

vancements have explored more pragmatic yet approximate strategies like MC-dropout [27] and

deep ensembles [28] to achieve quicker and more accurate uncertainty assessments for OOD de-

tection.

2.1.2 Distance-based method

Distance-basedmethods are based on the idea that OOD samples are supposed to be significantly

distant from the ID class centroids or prototypes. [29] leveraged the minimum Mahalanobis

distance from all class centroids for OOD detection. Following this, another study separated
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images into foreground and background, computing the Mahalanobis distance ratio between

these segments [30]. Diverging from these parametric methods, recent research [31] highlighted

the effectiveness of a non-parametric nearest-neighbor distance approach for identifying OOD

samples. It calculated the distance between the feature of the test sample with features of all

training samples and utilized the minimum one as the uncertainty score. This non-parametric

strategy, unlike the Mahalanobis distance, did not rely on assumptions about the feature space’s

distribution, offering enhanced simplicity, adaptability, and broader applicability.

Various distance functions can be employed for open-set recognition. Certain studies employ

cosine similarity between test sample and class features for OOD sample identification [32, 33].

It has been discovered that a one-dimensional subspace, defined by the training features’ first

singular vector, enhances the efficacy of cosine similarity for OOD detection [34]. Additionally,

other research utilized distances based on the radial basis function kernel [35], Euclidean dis-

tance [36], and geodesic distance [37] to compare the input’s embedding with class centroids.

Beyond the distance calculations to class centroids, assessing the feature norm within the or-

thogonal complement of the principal space has proven to be effective for OOD detection [38].

The recent study CIDER [39] delved into the effectiveness of embeddings within hyperspherical

space, aiming to foster between-class dispersion and within-class compactness.

2.1.3 Reconstruction-based method

Reconstruction-based methods operate on the principle that an encoder-decoder framework,

when trained on ID data, typically produces different results for ID and OOD samples. Specif-

ically, models trained solely on ID data struggled to accurately reconstruct OOD samples, en-

abling their identification as OOD [40]. Although pixel-level reconstruction in models is less

favored for OOD detection due to high training costs, using hidden features for reconstruction

emerges as a viable alternative [41]. Instead of reconstructing the full image, the recent Mood-

Cat model [42] masked parts of the input image and detected OOD samples based on the quality

of the reconstruction for classification purposes. The READ method [43] integrated disparities

between a classifier’s predictions and an autoencoder’s outputs, translating pixel reconstruction

errors into the classifier’s latent space. Additionally, the MOOD approach [44] illustrated the

advantage of using masked image modeling over contrastive and traditional classifier training

for pretraining in enhancing OOD detection efficiency.
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2.2 Open-set Recognition with Outlier Exposure

2.2.1 Real outlier data

Some open-set recognition approaches involve leveraging a collection of known OOD samples,

or outliers, during the training phase to enhance the model’s ability to distinguish between ID

and OOD samples. Such outlier exposure methods could significantly improve the open-set

performance because of additional information from the outlier data. Initial methods advocated

for inducing models to generate uniform or high-entropy predictions for OOD samples [45]

and aimed to reduce the magnitudes of OOD features [46]. Subsequent innovations, such as

MCD [47], introduced a dual-branch network design to amplify entropy discrepancies for OOD

samples during training. Another method involved an additional class for all recognized OOD

samples [48], effectively separating them from ID data.

To manage the large volumes of OOD data during training, strategies such as outlier min-

ing [49, 50] and adversarial resampling [51] have been employed to select the representative

subset of outliers. In situations lacking near OOD samples which are similar to ID samples,

MixOE [52] suggested creating synthetic outliers through interpolating between ID and dis-

tant OOD samples for enhanced regularization. Additionally, considering more realistic sce-

narios where OOD datasets may inadvertently include ID samples, techniques like pseudo-

labeling [53], ID filtering [54] with optimal transport methods [55], are utilized to minimize

ID data contamination. Overall, OOD detection methods that incorporate outlier exposure gen-

erally achieve superior performance. However, the effectiveness of these approaches can be

significantly influenced by the relevance of the chosen OOD samples to actual OOD scenar-

ios [56].

2.2.2 Generated outlier data

In the absence of available OOD samples during the training stage, some methods aim to cre-

ate synthetic OOD samples to facilitate the distinction between ID and OOD data. Techniques

include employing Generative Adversarial Networks (GANs) [57] to produce OOD training

examples that encourage uniform model predictions [58], or applying meta-learning to refine

sample generation [59]. Nevertheless, generating synthetic images in high-dimensional pixel

space poses optimization challenges. To address this, recent methods, such as VOS [60], have

introduced the creation of virtual outliers within the feature space’s low-likelihood areas, ben-

efiting from the reduced complexity of lower-dimensional spaces. VOS adopted a paramet-
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ric method by approximating the feature space with a class-conditional Gaussian distribution,

whereas NPOS [61] generated outlier data through a non-parametric approach. Recognizing

that synthetic OOD data might be inaccurate or irrelevant, DOE [62] crafted challenging OOD

scenarios to refine OOD detection via a min-max learning strategy. Similarly, ATOL [63] em-

ployed auxiliary tasks to mitigate errors in OOD generation. [64] proposed a novel technique

for crafting unknown objects from real-world videos, leveraging spatial-temporal distillation to

enrich training data with previously unrecognized items.

2.3 Open-set Recognition Applications

2.3.1 Open-set semantic segmentation

Open-set semantic segmentation is to detect anomaly objects in an image, which is significant

for the autonomous driving system. [65] improved OOD detection using two strategies: First,

it leveraged COCO dataset [66] samples as OOD proxies and introduced a secondary goal to

increase softmax entropy, enhancing OOD detection across diverse datasets. Second, it applied

a post-processing step with linear models on DNN softmax probabilities to reduce false posi-

tives, using meta classification. PEBAL [67] combined pixel-wise abstention learning (AL) to

adaptively identify anomaly pixels and an energy-based model (EBM) to understand the dis-

tribution of normal pixels. It employed joint training of EBM and AL, where EBM flagged

anomaly pixels with high energy, and AL applied a reduced penalty for these pixels when cat-

egorizing them as anomalies. DenseHybrid [68] introduced a hybrid method that integrated

the class posterior, dataset posterior, and an unnormalized data likelihood for anomaly detec-

tion. Mask2Anomaly [69] utilized the Mask2former [70] as the backbone which considered

the semantic segmentation as the mask-level classification rather than a pixel-level classifica-

tion problem. It showed that the mask-level uncertainty estimation has better performance than

pixel-level uncertainty estimation since they argued that all pixels from an object should have

the same uncertainty scores.

Reconstruction-based methods for open-set semantic segmentation [71–74] had the similar

pipeline. They first utilized a generative model like GANs to reconstruct the image and then

compared the difference between the synthesized image and original image to locate the OOD

objects. It is based on the idea that the OOD objects cannot be generated well since they are not

in the training set.

In the field of open-set 3D semantic segmentation, we first defined this problem and primar-
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ily explored this task in [75]. A method called REAL was proposed in our work to estimate the

uncertainty scores using redundancy classifiers. APF [76] followed our work and developed a

feature extraction module for extracting point features, a prototypical constraint module, and a

feature adversarial module for OOD detection.

2.3.2 Open-set action recognition

DEAR [77] provided a comprehensive analysis of the open-set action recognition challenge,

adapting various open-set image recognition techniques to video analysis. These adaptations

include methods like SoftMax [1], MC Dropout [27], OpenMax [78], and RPL [79]. According

to the benchmarks in [77], only BNN SVI [80] and DEAR [77], their own contribution, are ex-

plicitly formulated for video data. BNNSVI appliedBayesian neural networks to open-set action

recognition, whereas DEAR employed deep evidential learning [81] for uncertainty estimation

and introduces two modules aimed at reducing overconfidence in predictions and mitigating

appearance bias. While the focus of existing approaches is on refining uncertainty estimation,

our proposed method, PSL [82], emphasized the significance of varied feature representations

to enhance the separability of open-set activities.
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CHAPTER 3

OPEN-SET 3D SEMANTIC SEGMENTATION VIA
REDUNDANCY CLASSIFIERS

3.1 Introduction

3D LIDAR sensors play an important role in the perception system of autonomous vehicles.

Semantic segmentation for LIDAR point clouds has grown very fast in recent years [83–86],

benefiting from well-annotated datasets including SemanticKITTI [87–89] and nuScenes [90].

However, existing methods for LIDAR semantic segmentation are all closed-set and static. The

closed-set network regards all inputs as categories encountered during training, so it will assign

the labels of old classes to OOD classes by mistake, which may have disastrous consequences in

safety-sensitive applications, such as autonomous driving [91]. Meanwhile, the static network

is constrained to certain scenarios, as it cannot update itself to adapt to new environments. In

addition, training from scratch to adapt to new scenes is extremely time-consuming, and the

annotations of old classes are sometimes unavailable, due to privacy constrains.

To solve the closed-set and static problem, we propose the open-world semantic segmenta-

tion for LIDAR point clouds, which is composed of two tasks: 1) open-set semantic segmenta-

tion (OSeg) to assign the unknown label to OOD classes as well as to assign the correct labels to

old classes, and 2) incremental learning (IL) to gradually incorporate the OOD or novel classes

into the knowledge base after labellers provide the labels of novel classes. Fig. 3.1 illustrates an

example of open-world semantic segmentation for LIDAR point clouds.

As we are the first to study OSeg task in the 3D LIDAR point cloud domain, we refer to

the existing methods in the 2D image domain, which can be divided into two types, generative

network-based methods [74, 92, 93] and uncertainty-based methods [1, 27, 94], though none of

them can be directly utilized. Generative network-based methods adopt a conditional genera-

tive adversarial network (cGAN) [95] to reconstruct the input based on the closed-set prediction

results, and assume the OOD regions have a larger difference in appearance between the re-

constructed input and original input. However, cGAN is not appropriate for reconstruction of

the point cloud as all information is determined by the geometry information, i.e., coordinates
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Figure 3.1: Closed-set model ℳ𝑐 wrongly assigns the labels of old classes to OOD objects
(A: construction vehicle is classified as the manmade, truck, and even pedestrian; B: barrier is
classified as the road, manmade and other flat; C: traffic cone is classified as the manmade).
After open-set semantic segmentation (OSeg) task, the open-set model ℳ𝑜 can identify the
OOD objects and assign the label unknown for them. After incremental learning (IL) task, the
model ℳ𝑖 can classify both old and novel classes.

of points, and cGAN can only reconstruct the channel information, i.e., RGB values, while

keeping the geometry information, including coordinates of pixels and the shape of an image,

unchanged. The uncertainty-based methods also work poorly as we find the network predicts

the OOD classes as old classes with high confidence scores.

In addition to the challenges of the OSeg task, the catastrophic forgetting of old classes

in incremental learning [96] is another problem to solve. Directly finetuning the network using

only the labels of novel classes will make the network classify everything as novel classes. Thus

a method is needed to incrementally learn novel classes while keeping the performance of the

old classes.

We find that the closed-set and static properties of the traditional closed-set model is due to

the fixed classifier architecture, i.e., one classifier corresponds to one old class. Therefore, we

propose a REdundAncy cLassifier (REAL) framework to provide a dynamic classifier archi-

tecture to adapt the model to both the OSeg and IL tasks. For the OSeg task, we add several

redundancy classifiers (RCs) on the basis of the original network to predict the probability of

the unknown class. Then, during the IL task, several RCs are trained to classify the newly

introduced classes, while the remaining RCs are still responsible for the unknown class. We

provide the training strategies for the OSeg and IL tasks under REAL, based on the unknown

object synthesis, predictive distribution calibration, and pseudo label generation. We show the

effectiveness of REAL and corresponding training strategies through our comprehensive exper-

iments. In summary, our contributions are three-folds:

• We are the first to define the open-world semantic segmentation problem for LIDAR point
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clouds, which is composed of OSeg and IL tasks;

• We propose a REAL model to provide a general architecture for both the OSeg and IL tasks,

as well as training strategies for each task, based on the unknown objects synthesis, predictive

distribution calibration, and pseudo labels generation;

• We construct benchmark and evaluation protocols for OSeg and IL in the 3D LIDAR point

cloud domain, based on the SemanticKITTI and nuScenes datasets, to measure the effective-

ness of our training strategies under REAL.

3.2 Open-world Semantic Segmentation

In this section, we formalise the definition of open-world semantic segmentation for LIDAR

point clouds. Let the classes of the training set be called old classes and labeled by positive

integers 𝒦0 = {1, 2, ..., 𝐶} ⊂ ℕ+. Unlike the traditional closed-set semantic segmentation

where the classes of the test set are the same as the training set, some novel or OOD classes

𝒰 = {𝐶 + 1, ...} are involved in the test set in the open-world semantic segmentation problem.
Let one LIDAR point cloud sample be formulated as 𝒟 = {𝐏,𝐘}, where 𝐏 = {𝐩1,𝐩2, ..., 𝐩𝑀}
is the input LIDAR point cloud composed of 𝑀 points and every point 𝐩 is represented by three
coordinates 𝐩 = (𝑥, 𝑦, 𝑧). The label 𝐘 = {𝑦1, 𝑦2, ..., 𝑦𝑀} contains the semantic class for every

point, in which 𝑦 ∈ 𝒦0 for the training data and 𝑦 ∈ 𝒦0 ∪ 𝒰 for the test data.

Suppose we already have a model ℳ𝑐 which is trained under the closed-set condition, so its

outputs are within the domain of 𝒦0. As discussed in Sec. 3.1, the open-world semantic seg-

mentation is composed of two tasks: open-set semantic segmentation (OSeg) and incremental

learning (IL). For the OSeg task, the model ℳ𝑐 will be finetuned to ℳ𝑜 so that it can assign the

correct labels for the points of old classes 𝒦0, as well as assign the unknown label to the points

of OOD classes 𝒰. For the IL task, the model ℳ𝑜 will be further finetuned to ℳ𝑖 when the

labels of OOD or novel classes 𝒦𝑛 are given, so that its knowledge base is enlarged from 𝒦0

to 𝒦0 ∪ 𝒦𝑛, where 𝒦𝑛 = {𝐶 + 1, ..., 𝐶 + 𝑛}. So the classes in 𝒦𝑛 change from unknown to

known for the network. We follow the classical task IL setting [97–99] that the new given labels

only contain the annotation of the novel class 𝒦𝑛, while the remaining points of old classes 𝒦0

are not annotated. Additionally, the model after IL ℳ𝑖 still keeps the open-set property, i.e.,

assigns the unknown label to the remaining novel classes 𝒦𝑟𝑛 = {𝐶 + 𝑛 + 1, ...}.
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Figure 3.2: Redundancy classifier framework (REAL). Closed-set model ℳ𝑐 can only output
logits for old classes 𝑦𝑜𝑙𝑑 . Redundancy Classifiers 𝑔𝑟𝑒 are added on top of the original framework
in our REAL. All 𝑔𝑟𝑒 in ℳ𝑜 are used to output the scores 𝑦𝑢𝑘 for the unknown class. After the
IL task, part of 𝑔𝑟𝑒 are used to output logits for the newly introduced classes 𝑦𝑛𝑣, while the
remaining are still for the unknown class 𝑦𝑢𝑘.

3.3 Redundancy Classifier Framework (REAL)

The overall view of REAL is shown in Fig. 3.2. The trained closed-set model ℳ𝑐 , which can

well classify old classes 𝒦0, is composed of a feature extractor 𝑓 and normal classifiers 𝑔𝑛𝑚 =

{𝑔1
𝑛𝑚, 𝑔2

𝑛𝑚, ..., 𝑔𝐶
𝑛𝑚}. For a certain input 𝐏 ∈ ℝ𝑀×3, the output of the model ℳ𝑐 is

ℳ𝑐(𝐏) = [𝑦𝑜𝑙𝑑] = [𝑔𝑛𝑚(𝑓 (𝐏))] ∈ ℝ𝑀×𝐶 . (3.1)

OSeg task: The OSeg task is to adapt closed-set model ℳ𝑐 to open-set model ℳ𝑜 so that ℳ𝑜

can identify novel or OOD classes 𝒰 as unknown. To achieve this goal, we add 𝑟 redundancy
classifiers (RCs) 𝑔𝑟𝑒 = {𝑔1

𝑟𝑒, 𝑔2
𝑟𝑒, ..., 𝑔𝑟

𝑟𝑒} on top of the original feature extractor 𝑓 , as shown in
Fig. 3.2 ℳ𝑜. All RCs in ℳ𝑜 are used to predict the scores 𝑦𝑢𝑘 for the unknown class. We let

the maximum response of 𝑦𝑢𝑘 be the score of the unknown class, which is represented by class
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0. In this way, the output of the open-set model ℳ𝑜 is

ℳ𝑜(𝐏) = [max 𝑦𝑢𝑘, 𝑦𝑜𝑙𝑑] = [max 𝑔𝑟𝑒(𝑓 (𝐏)), 𝑔𝑛𝑚(𝑓 (𝐏))] ∈ ℝ𝑀×(1+𝐶). (3.2)

IL task: The IL task is to train open-set model ℳ𝑜 to ℳ𝑖 so that newly introduced classes 𝒦𝑛

change from unknown to known. ℳ𝑖 is still open-set, i.e., it can classify remaining novel classes

𝒦𝑟𝑛 as unknown. In this task, among all RCs 𝑔𝑟𝑒, some of the RCs 𝑔𝑛𝑣
𝑟𝑒 = {𝑔1

𝑟𝑒, 𝑔2
𝑟𝑒, ..., 𝑔𝑛

𝑟𝑒} are

used to classify newly introduced classes 𝒦𝑛, i.e., 𝑦𝑛𝑣 in Fig. 3.2 ℳ𝑖, and the remaining RCs

𝑔𝑢𝑘
𝑟𝑒 = {𝑔𝑛+1

𝑟𝑒 , 𝑔𝑛+2
𝑟𝑒 , ..., 𝑔𝑟

𝑟𝑒} are kept for the unknown class 𝒦𝑟𝑛, i.e., 𝑦𝑢𝑘 in Fig. 3.2 ℳ𝑖. In this

way, the output of ℳ𝑖 can be represented as

ℳ𝑖(𝐏) = [max 𝑦𝑢𝑘, 𝑦𝑜𝑙𝑑 , 𝑦𝑛𝑣] = [max 𝑔𝑢𝑘
𝑟𝑒 (𝑓 (𝐏)), 𝑔𝑛𝑚(𝑓 (𝐏)), 𝑔𝑛𝑣

𝑟𝑒 (𝑓 (𝐏))]. (3.3)

where ℳ𝑖(𝐏) ∈ ℝ𝑀×(1+𝐶+𝑛).

3.3.1 Open-set Semantic Segmentation (OSeg)

The OSeg task is to train the closed-set model ℳ𝑐 to the open-set model ℳ𝑜 which can identify

novel classes 𝒰 as unknown, as shown in Fig. 3.1 (c). The network architecture of ℳ𝑜 is shown

in Fig. 3.2 ℳ𝑜. We introduce two training methods including Unknown Object Synthesis and

Predictive Distribution Calibration as well as inference procedure in this section.

UnknownObject Synthesis: We synthesize pseudo unknown objects in the LIDAR point cloud

to approximate the distribution of real novel objects. The synthesis process should meet two

requirements: 1) the synthesized object should share some invariant basic geometry features

with existing objects, such as curved and flat surfaces, so that it can be regarded as an object

rather than noise and possibly have a similar appearance to real unknown objects; 2) the synthesis

process should be as quick as possible.

We find that resizing the existing objects with a proper factor is a simple but effective way

to conduct the synthesis process, as it keeps the geometric shape of an object, but the different

size determines it is a new object. For instance, a car, truck, bus, and construction vehicle have

similar local geometric features, such as the shape of the body and tires, but their size can be

different. Therefore, we pick up objects of specific old classes 𝒦𝑠𝑦𝑛 with a probability 𝑝𝑠𝑦𝑛 and

resize them from 0.25 to 0.5 times or 1.5 to 3 times as pseudo unknown objects, such as B in

Fig. 3.4 (c) and (d). In this way, the input 𝐏 is divided into two parts: 𝐏 = 𝐏𝑠𝑦𝑛 ∪𝐏𝑛𝑚, where 𝐏𝑠𝑦𝑛

and 𝐏𝑛𝑚 represent the points of synthesized objects and unchanged normal objects respectively.

14



Figure 3.3: Distribution of scores of the unknown class for Maximum Softmax Probability
(MSP) and our REAL method. The scores of the unknown class for novel classes are low in
MSP (a), meaning the closed-set prediction classifies novel classes as old classes with high con-
fidence.

For the points of synthesized objects 𝐏𝑠𝑦𝑛, the synthesis loss ℒ𝑠𝑦𝑛 is

ℒ𝑠𝑦𝑛 = ℓ(ℳ(𝐏𝑠𝑦𝑛), 0), (3.4)

where ℓ is the cross-entropy loss. The ground truth labels of synthesized objects are set to be

the unknown class 0, so the first term in Eq. 3.2 is trained to give high scores to objects never

seen before.

Predictive Distribution Calibration: We find that in the closed-set prediction, the novel ob-

jects are classified as old classes with high probability, as shown in Fig. 3.3 (a). We intend to

alleviate this problem by probability calibration, and the calibrated scores of the unknown class

are shown as Fig. 3.3 (b). We force every point of old classes to have the largest score on its

original class, and have the second largest score on the unknown class [100]. By this design, the

network is supposed to output high probability scores on the unknown class for the novel ob-

jects as they do not belong to any one of the old classes. Therefore, for the points of unchanged

normal objects 𝐏𝑛𝑚, the calibration loss is designed as

ℒ𝑐𝑎𝑙 = ℒ𝑜𝑟𝑖
𝑐𝑎𝑙 + 𝜆𝑐𝑎𝑙ℒ𝑢𝑘

𝑐𝑎𝑙, (3.5)

where ℒ𝑜𝑟𝑖
𝑐𝑎𝑙 and ℒ𝑢𝑘

𝑐𝑎𝑙 are defined as

ℒ𝑜𝑟𝑖
𝑐𝑎𝑙 = ℓ(ℳ(𝐏𝑛𝑚),𝐘𝑛𝑚), (3.6)

ℒ𝑢𝑘
𝑐𝑎𝑙 = ℓ(ℳ(𝐏𝑛𝑚) \ 𝐘𝑛𝑚, 0), (3.7)

15



Figure 3.4: Pseudo labels generating process for incremental learning. Ground truth (a) only
contains the label of the novel class (A: other-vehicle). So we combine the prediction results of
ℳ𝑜 (b) to generate the pseudo labels (c). Then we resize objects of old classes as the synthesized
objects in (d) (B: resized car).

where 𝐘𝑛𝑚 is the ground truth of 𝐏𝑛𝑚. ℳ(𝐏𝑛𝑚) \ 𝐘𝑛𝑚 means to remove the response of the

corresponding ground truth old class. ℒ𝑜𝑟𝑖
𝑐𝑎𝑙 is to ensure the good closed-set prediction, while

ℒ𝑢𝑘
𝑐𝑎𝑙 is to make every point have the second largest probability on the unknown class.

Loss Function: The overall loss function to train the model ℳ𝑐 to ℳ𝑜 is

ℒ𝑂𝑆𝑒𝑔 = ℒ𝑂𝑆𝑒𝑔
𝑐𝑎𝑙 + 𝜆𝑠𝑦𝑛ℒ𝑂𝑆𝑒𝑔

𝑠𝑦𝑛 , (3.8)

where ℒ𝑂𝑆𝑒𝑔
𝑐𝑎𝑙 is determined by Eq. 3.5, Eq. 3.6, and Eq. 3.7, while ℒ𝑂𝑆𝑒𝑔

𝑠𝑦𝑛 is determined by

Eq. 3.4. All ℳ in the related terms are ℳ𝑜 in the OSeg task.

Inference: Both the closed-set and open-set performance of the finetuned model ℳ𝑜 will be

evaluated. For the closed-set prediction, the inference result 𝐘̂𝑐𝑙𝑜𝑠𝑒 is defined as

𝐘̂𝑐𝑙𝑜𝑠𝑒 = argmax
𝑖=1,2,...,𝐶

𝑔𝑛𝑚(𝑓 (𝐏)). (3.9)

For the open-set prediction, we have to classify both old classes and the novel class, so the

inference result 𝐘̂𝑜𝑝𝑒𝑛 is defined as:

𝐘̂𝑜𝑝𝑒𝑛 =
⎧⎪
⎨
⎪⎩

argmax
𝑖=1,2,...,𝐶

𝑔𝑛𝑚(𝑓 (𝐏)) 𝜆𝑐𝑜𝑛𝑓 < 𝜆𝑡ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(3.10)

where 𝜆𝑐𝑜𝑛𝑓 = max 𝑔𝑟𝑒(𝑓 (𝐏)) is the confidence score of the unknown class, and 𝜆𝑡ℎ is the

threshold. The unknown class is represented by class 0.

3.3.2 Incremental Learning (IL)

The IL task is to trainℳ𝑜 toℳ𝑖 when the labels of novel classes𝒦𝑛 are available. ℳ𝑖 can clas-

sify both newly introduced classes 𝒦𝑛 and old classes 𝒦0, as well as identify remaining novel
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classes 𝒦𝑟𝑛 as unknown. The inference example is shown in Fig. 3.1 (d) and the architecture is

shown in Fig. 3.2 ℳ𝑖.

As mentioned in Sec. 3.2, only the labels of introduced novel classes 𝒦𝑛 are given in this

task. Therefore, we divide the unchanged normal points 𝐏𝑛𝑚 into two parts, 𝐏𝑜𝑙𝑑
𝑛𝑚 , which belongs

to old classes 𝒦0, and 𝐏𝑛𝑣
𝑛𝑚, which belongs to newly introduced classes 𝒦𝑛, so that 𝐏𝑛𝑚 = 𝐏𝑜𝑙𝑑

𝑛𝑚 ∪
𝐏𝑛𝑣

𝑛𝑚. The labels of points 𝐏𝑛𝑣
𝑛𝑚 are given as 𝐘𝑛𝑣

𝑛𝑚, e.g., labels of A in Fig. 3.4 (a), but labels of 𝐏𝑜𝑙𝑑
𝑛𝑚

are not given, e.g., gray points in Fig. 3.4 (a). If we only use 𝐘𝑛𝑣
𝑛𝑚 to directly finetune the model,

it will classify all points as the newly introduced class as there is only one kind of class in the

training process. This is called the catastrophic forgetting and we use Pseudo Label Generation

to solve this problem.

Pseudo Label Generation: We use model ℳ𝑜 to predict the pseudo labels 𝐩𝐘𝑜𝑙𝑑
𝑛𝑚 for 𝐏𝑜𝑙𝑑

𝑛𝑚 [2,

99], as shown in Fig. 3.4 (b). In this way, the learned knowledge of old classes is preserved

in 𝐩𝐘𝑜𝑙𝑑
𝑛𝑚 to alleviate the catastrophic forgetting problem. Then we combine 𝐩𝐘𝑜𝑙𝑑

𝑛𝑚 with 𝐘𝑛𝑣
𝑛𝑚 to

generate the pseudo labels of the whole point cloud 𝐘𝑛𝑚, such as in Fig. 3.4 (c).

Loss Function: Note that we keep the open-set property after IL, so the methods in OSeg task

includingUnknown Object Synthesis and Predictive Distribution Calibration are still used in IL

task. The overall loss function to train the model ℳ𝑜 from ℳ𝑖 is

ℒ𝑖𝑙 = ℒ𝑖𝑙
𝑐𝑎𝑙 + 𝜆𝑠𝑦𝑛ℒ𝑖𝑙

𝑠𝑦𝑛, (3.11)

where ℒ𝑖𝑙
𝑐𝑎𝑙 and ℒ𝑖𝑙

𝑠𝑦𝑛 are determined by Eq. 3.5, Eq. 3.6, Eq. 3.7, and Eq. 3.4. All ℳ in the

related terms are ℳ𝑖. Note that 𝐘𝑛𝑚 in Eq. 3.6 and Eq. 3.7 are generated as

𝐘𝑛𝑚 = 𝐩𝐘𝑜𝑙𝑑
𝑛𝑚 ∪ 𝐘𝑛𝑣

𝑛𝑚, (3.12)

where 𝐘𝑛𝑣
𝑛𝑚 is the ground truth label of newly introduced classes 𝒦𝑛 and 𝐩𝐘𝑜𝑙𝑑

𝑛𝑚 is the pseudo

labels of old classes 𝒦0 generated by ℳ𝑜,

𝐩𝐘𝑜𝑙𝑑
𝑛𝑚 = ℳ𝑜(𝐏𝑜𝑙𝑑

𝑛𝑚 ). (3.13)

The 𝐘𝑛𝑚 in Eq. 3.12 contains both newly introduced classes 𝐾𝑛 and old classes 𝐾0, so ℳ𝑖 can

learn new classes without forgetting old classes.

Inference: To evaluate the performance of IL, we only calculate the closed-set prediction re-

sults. This is because, for incremental learning we care about how well the catastrophic for-

getting problem is alleviated and the new classes are learned, while the ability to classify the
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unknown class is already evaluated by Eq. 3.10 in OSeg task, although after IL the model ℳ𝑖

can still classify the unknown class 𝒦𝑟𝑛. The closed-set inference result ̂𝐘′𝑐𝑙𝑜𝑠𝑒 is defined as

̂𝐘′𝑐𝑙𝑜𝑠𝑒 = argmax
𝑖=1,2,...,𝐶+𝑛

[𝑔𝑛𝑚(𝑓 (𝐏), 𝑔𝑛𝑣
𝑟𝑒 (𝑓 (𝐏))]. (3.14)

3.4 Experiments

We conduct experiments for both tasks of the open-world semantic segmentation, including

OSeg and IL tasks. We evaluate our proposedmethod on two large-scale datasets, SemanticKITTI

and nuScenes.

3.4.1 Open-world Evaluation Protocol

Data Split: We set the novel classes of SemanticKITTI 𝒦𝑠𝑘
𝑛 and nuScenes 𝒦𝑛𝑠

𝑛 as:

𝒦𝑠𝑘
𝑛 = {other-vehicle}

𝒦𝑛𝑠
𝑛 = {barrier, construction-vehicle, traffic-cone, trailer}

All remaining classes are included in the old class set 𝒦𝑠𝑘
0 and 𝒦𝑛𝑠

0 . During training of the

closed-set model ℳ𝑐 and open-set model ℳ𝑜, we set the labels of novel classes 𝒦𝑠𝑘
𝑛 and 𝒦𝑛𝑠

𝑛

to be void and ignore them. During incremental learning, we gradually introduce the labels of

novel classes𝒦𝑠𝑘
𝑛 and𝒦𝑛𝑠

𝑛 one by one, and set the labels of old classes𝒦𝑠𝑘
0 and𝒦𝑛𝑠

0 to be void.

EvaluationMetrics: To evaluate the performance of the open-set semantic segmentation model

ℳ𝑜, we consider both the closed-set and open-set segmentation ability. The closed-set ability

is measured by mIoUclose, while the open-set evaluation is regarded as a binary classification

problem between the known class and unknown class, which is measured by area under the ROC

curve (AUROC) and area under the precision-recall curve (AUPR) [3].

To evaluate the performance of the model ℳ𝑖 after incremental learning, we calculate the

performance of the old classes mIoUold and newly introduced classes mIoUnovel respectively,

and also the mIoU of all classes.

3.4.2 Open-set Semantic Segmentation (OSeg)

Implementation: Weadopt Cylinder3D [83] as the base network and train the traditional closed-

set modelℳ𝑐 following the training settings in [83] using the labels of old classes𝒦𝑠𝑘
0 and𝒦𝑛𝑠

0 .
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Table 3.1: Benchmark of open-set semantic segmentation for LIDAR point clouds. Results are
evaluated on the validation set.

Dataset SemanticKITTI nuScenes

Methods AUPR AUROC mIoUold AUPR AUROC mIoUold

Closed-set 0 0 58.0 0 0 58.7
Upper bound 73.6 97.1 63.5 86.1 99.3 73.8

MSP 6.7 74.0 58.0 4.3 76.7 58.7
MaxLogit 7.6 70.5 58.0 8.3 79.4 58.7
MC-Dropout 7.4 74.7 58.0 14.9 82.6 58.7
REAL 20.8 84.9 57.8 21.2 84.5 56.8

Figure 3.5: Qualitative results of OSeg task. Novel classes are in pink (other-vehicle in Se-
manticKITTI (top), and construction-vehicle and barrier in nuScenes (bottom)). The results
show that our method has a better performance in distinguishing the novel class from old classes
than all the baselines. Best viewed in zoom.

Then we add several redundancy classifiers on top of theℳ0 and finetune the modelℳ𝑐 toℳ𝑜

following Sec. 3.3.1. The old classes used to synthesize novel objects 𝒦𝑠𝑦𝑛 are car for Se-

manticKITTI and car, bus, and truck for nuScenes. The probability of resizing these objects

𝑝𝑠𝑦𝑛 is set to 0.5. The unknown object synthesis time is 0.5-4 𝑚𝑠 based on our experiments,
which is sufficiently quick.

Baselines and Upper Bound: We refer to several methods from the open-set 2D semantic

segmentation domain and implement them in our 3D LIDAR points domain as our baselines,

including MSP [1], Maxlogit [3], and MC-Dropout [27]. The upper bound is to use labels of all

classes 𝒦0 ∪ 𝒦𝑛 to train the network and regard the softmax probability of the classes 𝒦𝑛 as

the confidence score.

Quantitative results: The quantitative results of OSeg are shown in Tab. 3.1. The closed-set

method does not consider the unknown class at all, so the open-set evaluation metrics are 0.

Among all open-set semantic segmentation baselines, our REAL achieves remarkably better

results on the open-set evaluation metrics. The closed-set mIoUold shows that our method does
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Figure 3.6: Ablation experiments of coefficient 𝜆𝑠𝑦𝑛, 𝜆𝑐𝑎𝑙 and number of redundancy classifiers
𝑟 for OSeg task on SemanticKITTI.

Table 3.2: Ablation study results of ℒ𝑐𝑎𝑙 and ℒ𝑠𝑦𝑛 for OSeg task on SemanticKITTI.

Row ID ℒ𝑐𝑎𝑙 ℒ𝑠𝑦𝑛 AUPR AUROC mIoUold

1 5 5 0 0 58.0

2 ! 5 10.0 77.5 58.1

3 ! ! 20.8 84.9 57.8

not sacrifice the ability to classify old classes. The upper bound naturally achieves the best

performance as it is conducted in a supervised manner, while the information of the unknown

class is not provided for other open-set methods.

Qualitative results: Fig. 3.5 contains the qualitative results from SemanticKITTI and nuScenes

respectively. Fig. 3.5 top row shows that our method can identify the other-vehicle as the novel

class, while all baselines consider it as the truck. In Fig. 3.5 bottom row, the baselines classify

the construction-vehicle as the truck, pedestrian, and manmade, while our method distinguishes

it as the novel object.

Ablation experiments: Wecarefully conduct ablation experiments on the SemanticKITTI dataset

to verify the effectiveness of our we proposed components. According to the results of Row ID

2 in Tab. 3.2, using the calibration loss alone can already outperforms all baselines in Tab. 3.1.

Furthermore, the result of Row ID 3 illustrates that resizing the objects of existing classes with

a proper factor is a simple but useful way to imitate novel objects. 𝜆𝑠𝑦𝑛 and 𝑟 are set to be 1 and
3 according to Fig. 3.6. 𝜆𝑐𝑎𝑙 is 0.1, and it does not influence the result with a large margin based

on Fig. 3.6.

3.4.3 Incremental Learning (IL)

Implementation: We adopt the training strategies described in Sec. 3.3.2 to finetune the model

ℳ𝑜 to ℳ𝑖. The old classes used for synthesis 𝒦𝑠𝑦𝑛 are the same as the set during training from
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Table 3.3: Incremental learning results on SemanticKITTI 18 + 1 (other-vehicle) setting.

SemanticKITTI 18+1 Validation set Test set

Method mIoU mIoUnovel mIoUold mIoU mIoUnovel mIoUold

Closed-set 58.0 0 61.2 61.8 0 65.3
Train from scratch 63.5 44.1 64.6 62.2 40.1 63.5

Finetune 0 0.5 0 0 0 0
Feature extraction 6.8 0.6 7.1 6.9 0.4 7.3
LwF 21.6 1.7 22.7 20.2 0.9 21.3
REAL 64.3 51.5 65.0 61.1 25.3 63.1

Table 3.4: Incremental learning results on nuScenes for 12 + 4 (barrier, construction-vehicle,
traffic-cone, and trailer) setting.

nuScenes 12+4 Validation set Test set

Method mIoU mIoUnovel mIoUold mIoU mIoUnovel mIoUold

Closed-set 58.7 0 78.3 55.8 0 74.4
Train from scratch 73.8 62.5 77.6 73.8 70.4 74.8

Finetune 0 0 0 0 0 0
Feature extraction 5.5 2.1 6.6 5.3 1.9 6.4
LwF 6.1 2.4 7.3 5.6 2.5 6.6
REAL 74.9 62.2 79.1 74.2 71.9 75.0

ℳ𝑐 to ℳ𝑜.

Baselines and upper bound: We adopt direct finetuning of ℳ𝑜 to ℳ𝑖 using only the labels

of novel classes 𝒦𝑠𝑘
𝑛 and 𝒦𝑛𝑠

𝑛 to illustrate the catastrophic forgetting problem. Two methods

including Feature Extraction and Learning without Forgetting (LwF) [101] using 𝒦𝑠𝑘
𝑛 and 𝒦𝑛𝑠

𝑛

are regarded as the baselines. The upper bound is the same as the upper bound in the open-set

semantic segmentation task, which uses all labels 𝒦0 ∪ 𝒦𝑛 to train the network.

Quantitative results: Tab. 3.3 and Tab. 3.4 show the IL performance of SemanticKITTI and

nuScenes dataset respectively. Directly finetuning the model ℳ𝑜 to ℳ𝑖 only using labels of the

novel class incurs the catastrophic forgetting problem, i.e., the network classifies all points as

the new class. mIoUold becomes 0 as there is no prediction results in old classes. mIoUnovel is

also close to 0 as newly introduced class only counts a little portion in the whole point cloud.

In contrast, mIoUold in our method is similar with the closed-set, meaning our method can learn

the new classes one by one without forgetting the old classes. Our methods has better perfor-
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Figure 3.7: Incremental learning results for nuScenes validation set. Introduced class: 1: barrier;
2: construction-vehicle; 3: traffic-cone; 4: trailer.

Figure 3.8: Qualitative results of open-world semantic segmentation. GT: ground truth. In (b)
GT-base we set the novel classes 𝒦𝑛 in pink (A: construction-vehicle; B: barrier; C: traffic-
cone). (c) Closed-set prediction classifies novel objects as old classes. (d) Open-set predic-
tion can identify these novel objects as unknown. We gradually introduce the labels of barrier,
construction-vehicle, and traffic-cone in (e) REAL1, (f) REAL2, and (g) REAL3, so they can
classify these novel classes one by one. (h) GT-all contains ground truth of all classes.

mance compared to two baselines, showing that using the unlabeled background points 𝐘𝑜𝑙𝑑
𝑛𝑚 is

extremely helpful to preserve the old knowledge. Compared to training from scratch using all

data of old classes and novel classes, our method only needs the ground truth of newly intro-

duced classes 𝒦𝑛 and consumes much less time in training (5 epochs v.s. 35 epochs), while

keeping the similar performance.

We show the performance of themodel on the nuScenes dataset during IL in Fig. 3.7. Fig. 3.7

(a) shows during IL the model are gradually learning novel classes while keeping the perfor-

mance of old classes. Fig. 3.7 (b) illustrates the model starts from the closed-set model and

finally achieves the comparable performance with the upper bound.
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3.4.4 Open-world Semantic Segmentation

We illustrate thewhole open-world semantic segmentation system in Fig. 3.8. Traditional closed-

set model ℳ𝑐 classifies objects of novel classes 𝒦𝑛 as old classes 𝒦0. In Fig. 3.8 (c), A (con-

struction vehicle) is classified as manmade, pedestrian, and truck; B (barrier) is classified as road

and manmade; C (traffic-cone) is classified as road. Such misclassification may cause serious

problems in autonomous driving. Thus we conduct the methods in Eq. 3.8 to finetune ℳ𝑐 to

ℳ𝑜 so that this open-set model can identify these novel objects as unknown, as shown in pink

area of Fig. 3.8 (d). Then, after incremental learning using the methods described in Eq. 3.11,

the model can gradually classify new classes, e.g., A (barrier), B (construction-vehicle), and C

(traffic-cone) in Fig. 3.8 (e), (f), and (g). Note that after incremental learning the model can still

identify unknown classes, as shown in the pink areas of Fig. 3.8 (e).

3.5 Conclusion

Traditional closed-set semantic segmentation cannot handle objects of novel classes. In this

paper, we propose the open-world semantic segmentation for LIDAR point clouds, where the

model can identify novel objects (open-set semantic segmentation) and then gradually learn

them when labels are available (incremental learning). We propose the redundancy classifier

framework (REAL) and corresponding training and inference strategies to fulfill the open-world

semantic segmentation system. We hope this work can draw the attention of researchers toward

this meaningful and open problem.
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CHAPTER 4

OPEN-SET ACTION RECOGNITION VIA
PROTOTYPICAL SIMILARITY LEARNING

4.1 Introduction

Deep learning methods for video action recognition have developed very fast and achieved re-

markable performance in recent years [102–105]. However, these methods operate under the

closed-set condition, i.e., to classify all videos into one of the classes encountered during train-

ing. This closed-set condition is not practical in the real-world scenario, as videos whose classes

are beyond the range of the training set will be misclassified as one of the known classes. There-

fore, open-set action recognition (OSAR) is proposed to require the network to correctly clas-

sify in-distribution (ID) samples and identify out-of-distribution (OOD) samples. ID and OOD

classes refer to classes involved and not involved in the training set, respectively.

Open-set video action recognition is systematically studied in the recent work [77], in which

they transfer the existing methods for open-set image recognition into the video domain [1, 27,

78, 106] as the baselines, and propose their own method to introduce deep evidential learn-

ing [81] to calculate the uncertainty and propose a contrastive evidential debiasing module to

alleviate the appearance bias issue in the video domain. All of these methods tend to improve

the OSAR performance by calculating a better uncertainty score, based on the feature represen-

tations extracted by the neural network (NN). However, the main purpose of training in these

methods is still to classify ID samples, which determines the learned feature representations

are merely sufficient for ID classification. We find that almost all methods have a significantly

better open-set performance when the NN is pretrained with a large dataset (Fig. 4.1 (a)), so

we argue that the diversity of feature representation is extremely important for the OSAR task.

Therefore, we propose to boost the open-set ability from the feature representation perspective

rather than finding a better uncertainty score.

We first analyze the feature representation behavior in the open-set problem based on the

information bottleneck (IB) theory [107, 108]. We divide the information of the feature into

Instance-Specific (IS) and Class-Specific (CS) information. CS information is used for inter-
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Figure 4.1: (a) Richer semantic features brought by the pretraining can significantly improve
the open-set performance. (b) Information in the feature is divided into IS and CS information.
𝑠4 can be identified as OOD since it has distinct IS information (IS bars in different colors)
with 𝑠1 and 𝑠2, while 𝑠5 has distinct CS information (CS bars in different colors) with all ID
samples so it may be OOD. Our PSL aims to learn more IS and CS information (bars in longer
lengths) than Cross-Entropy (C.E.). (c) Both enlarged IS and CS information boosts the open-
set performance. (d) Our PSL achieves the best OSAR performance.

class recognition, so it is similar for samples within the same class but different for samples

from other classes. IS information is the special information of each sample within the same

class, as two samples cannot be exactly the same even if they belong to the same class. Both

CS and IS information are crucial for the open-set task, as illustrated in Fig. 4.1 (b), where 𝑠4

and 𝑠5 can be identified as OOD samples based on the IS and CS information, respectively. We

find that the closed-set classification setting tends to eliminate IS information during training,

and cannot fully extract the minimum sufficient CS information for the classification task, so

we aim to enlarge IS and CS information in learned feature representations for better OSAR

performance.

To enlarge the IS information, we propose thePrototypical Similarity Learning (PSL) frame-

work, in which the representation of an instance is encouraged to have less than 1 similarity with
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the corresponding prototype. In this way, we encourage the IS information to be retained and

not eliminated. In addition, [77] finds that OOD videos can be easily classified as ID videos

in a similar appearance. To alleviate this issue, we introduce the shuffled video into PSL and

make it have less than 1 similarity with the original sample. As the shuffled video almost shares

the same appearance information with the original one, we encourage the similarity to be less

than 1 so that the network can extract the distinct temporal information among them. We find

this technique actually enlarges the CS information in the feature representation. Fig. 4.1 (c)

shows that enlarging the IS information is helpful for the open-set performance, and more CS

information can further benefit the open-set and closed-set performance. To summarize, our

contributions include:

• We provide a novel perspective to analyze the open-set recognition task based on the informa-

tion bottleneck theory, and find that the classical closed-set cross-entropy tends to eliminate

the IS information which is helpful to identify OOD samples.

• We propose to enlarge the IS and CS information for better OSAR performance. Specifically,

PSL is designed to retain the IS information in the features, and we involve video shuffling in

PSL to learn more CS information.

• Experiments on multiple datasets and backbones show our PSL’s superiority over a large mar-

gin compared to other state-of-the-art counterparts, as shown in Fig. 4.1 (d).

4.2 Information Analysis in OSAR

4.2.1 Prototypical Learning

Let 𝑓 be the encoder to extract the information for an input video sample 𝑥 and output the feature
representation 𝑧 = 𝑓(𝑥), 𝑧 ∈ ℝ𝑑 . We first define a prototypical learning (PL) loss [109], which

is a general version of the cross-entropy (C.E.) loss:

ℒ𝑃 𝐿 = − log
exp(

𝑧𝑇 𝑘𝑖
𝜏 )

exp(
𝑧𝑇 𝑘𝑖

𝜏 ) + ∑
𝑛∈𝐾−

𝑖

exp(
𝑧𝑇 𝑛

𝜏 )
, (4.1)

where 𝑖 is the ground truth label of 𝑥, 𝑘𝑖 ∈ ℝ𝑑 is the prototype for class 𝑖, 𝜏 is a temperature

parameter, 𝐾−
𝑖 = {𝑘𝑗|𝑗 ∈ {1, 2, ..., 𝑁} , 𝑗 ≠ 𝑖} is the negative prototype set, and 𝑁 is the num-

ber of ID classes. Note that 𝑧 and 𝑘𝑖 are normalized by L2 norm, so that 𝑧𝑇 𝑘𝑖 is the cosine

similarity. If we regard prototypes as the row vector of the linear classifier 𝑊 ∈ ℝ𝑁×𝑑 , and do
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not normalize 𝑧 and 𝑘 as well as remove 𝜏, ℒ𝑃 𝐿 will degenerate to the C.E. loss. We introduce

the ℒ𝑃 𝐿 so that we can directly manipulate the feature representation 𝑧.

4.2.2 Information Analysis of OSAR

Let 𝑥𝐼𝐷, 𝑧𝐼𝐷, and 𝑌 be the random variables of ID sample, extracted representation of ID sam-

ple, and the task to predict the label of 𝑥𝐼𝐷, where 𝑧𝐼𝐷 = 𝑓(𝑥𝐼𝐷). Given the joint distribution
of 𝑝(𝑥𝐼𝐷, 𝑌 ), the relevant information between 𝑥𝐼𝐷 and 𝑌 is defined as 𝐼(𝑥𝐼𝐷, 𝑌 ), where 𝐼
denotes the mutual information [110]. The learned representation 𝑧𝐼𝐷 satisfies:

𝐼(𝑥𝐼𝐷; 𝑧𝐼𝐷) = 𝐼(𝑥𝐼𝐷; 𝑧𝐼𝐷|𝑌 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼𝑆

+ 𝐼(𝑧𝐼𝐷; 𝑌 )⏟⏟⏟⏟⏟
𝐶𝑆

, (4.2)

in which 𝐼(𝑥𝐼𝐷; 𝑧𝐼𝐷|𝑌 ) and 𝐼(𝑧𝐼𝐷; 𝑌 ) denote the Instance-Specific (IS) andClass-Specific (CS)
information respectively. In Fig. 4.2, IS information is blue and orange areas, and CS informa-

tion is yellow and green areas. CS information is for the closed-set label prediction task 𝑌 , while
IS information is the special information of each sample that is not related to 𝑌 .

To analyze the information about OSAR, we let 𝑇 be a random variable that represents the

task to distinguish OOD samples from ID samples, then we divide the information contained in

𝑧𝐼𝐷 about 𝑇 into two parts [108]:

𝐼(𝑧𝐼𝐷; 𝑇 ) = 𝐼(𝑧𝐼𝐷|𝑌 ; 𝑇 )⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼𝑆 about 𝑇

+ 𝐼(𝑧𝐼𝐷; 𝑌 ; 𝑇 )⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐶𝑆 about 𝑇

, (4.3)

where 𝐼(𝑧𝐼𝐷|𝑌 ; 𝑇 ) and 𝐼(𝑧𝐼𝐷; 𝑌 ; 𝑇 ) are the information about the OOD detection task 𝑇 in IS

and CS information (orange and green areas in Fig. 4.2 respectively). We can see that larger IS

and CS information are helpful for OSAR.

In this work, we aim to enlarge the information about 𝑇 contained in CS and IS information

for better OSAR performance, as illustrated in Fig. 4.1 (b) and the enlarged green and orange

areas in Fig. 4.2. We first analyze the CS and IS information behaviors under the classical C.E.

loss, and find that CS information is encouraged to be maximized but IS information tends to be

eliminated in Sec. 4.2.3. Then we explain this conclusion from the IB theory view in Sec. 4.2.4.

4.2.3 CS and IS Information Behavior under C.E.

CS information is for closed-set classification task 𝑌 , so it is similar for the same class sample,
but distinct for the different class sample (𝑠1, 𝑠2/𝑠3 in Fig. 4.1). In contrast, IS information is

27



C.E. PSL (ours)

𝐼(𝑧!"#|𝑌; 𝑇), IS information in 𝑧!"#	about	𝑇

𝑥!"#

𝑇

𝑌 𝑥!"#

𝑇

𝑌

(a) (b)

𝑧!"# = 𝑓(𝑥!"#), representation of 𝑥!"#	from NN
𝑧!"#$%", minimum sufficient information of 𝑥!"# about 𝑌
𝐼(𝑧!"#; 𝑌; 𝑇), CS information in 𝑧!"#	about	𝑇

Enlarged information that 𝑧!"# contains using our PSL

Figure 4.2: The neural network (NN) can only extract limited representations 𝑧𝐼𝐷 of the ID
sample 𝑥𝐼𝐷 for the current task 𝑌 (predict the closed-set label), which is not diverse enough for
the task 𝑇 (distinguish OOD samples), as green and orange areas are small in (a). In our PSL,
we encourage the NN to learn a more diverse representation so that more IS and CS information
about 𝑇 are contained.

not related to 𝑌 and it is distinct for samples in the same class (𝑠1, 𝑠2 in Fig. 4.1). Therefore,

we have the following proposition which describe the relation between CS/IS information and

feature representation similarity.

Proposition 1 For two feature representations of samples in the same class, more CS information

means these two feature representations are more similar, and more IS information decreases

their feature similarity.

CS information is for the closed-set label prediction task 𝑌 , which is fully supervised by C.E.
loss, so it is maximized during training. In contrast, Eq. 4.1 shows that C.E. encourages repre-

sentations of the same class to be exactly same with the corresponding prototype, and such high

similarity eliminates the IS information according to Proposition 1. Therefore, C.E. loss tends

to maximize the CS information and eliminate the IS information in the feature representation.

We analyze this conclusion based on Information Bottleneck (IB) theory in next Sec. 4.2.4.
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4.2.4 IB Theory Analysis for CS and IS Information

Applying the Data Processing Inequality [111] to the Markov chain 𝑌 → 𝑥𝐼𝐷 → 𝑧𝐼𝐷, we have

𝐼(𝑧𝐼𝐷; 𝑌 ) ≤ 𝐼(𝑥𝐼𝐷; 𝑌 ). (4.4)

It means that the compressed representation 𝑧𝐼𝐷 cannot containmore information of 𝑌 compared

to the original data 𝑥𝐼𝐷.

According to the IB theory [107, 110], the NN is to find the optimal solution of 𝑧𝐼𝐷 with

minimizing the following Lagrange:

ℒ[𝑝(𝑧𝐼𝐷|𝑥𝐼𝐷)] = 𝐼(𝑧𝐼𝐷; 𝑥𝐼𝐷) − 𝛽𝐼(𝑧𝐼𝐷; 𝑌 ), (4.5)

where 𝛽 is the Lagrange multiplier attached to the constrained meaningful condition. Eq. 4.5

demonstrates the NN is solving a trade-off problem, as the first term tends to keep the infor-

mation of 𝑥𝐼𝐷 as less as possible while the second term tends to maximize the information of

𝑌 .
Inspired by [108, 112], the sufficient and minimum sufficient representation of 𝑥𝐼𝐷 about 𝑌

can be defined as:

Definition 1 (Sufficient Representation) A feature representation 𝑧𝑠𝑢𝑓
𝐼𝐷 of 𝑥𝐼𝐷 is sufficient for 𝑌

if and only if 𝐼(𝑧𝑠𝑢𝑓
𝐼𝐷 ; 𝑌 ) = 𝐼(𝑥𝐼𝐷; 𝑌 ).

Definition 2 (Minimum Sufficient Representation) A sufficient representation 𝑧𝑚𝑖𝑛
𝐼𝐷 of 𝑥𝐼𝐷 is

minimum if and only if 𝐼(𝑧𝑚𝑖𝑛
𝐼𝐷 ; 𝑥𝐼𝐷) ≤ 𝐼(𝑧𝑠𝑢𝑓

𝐼𝐷 ; 𝑥𝐼𝐷), ∀𝑧𝑠𝑢𝑓
𝐼𝐷 that is sufficient for 𝑌 .

CS Information Maximization. The goal of training is to optimize 𝑓 so that 𝐼(𝑧𝐼𝐷; 𝑌 ) (CS
information) can approximate 𝐼(𝑥𝐼𝐷; 𝑌 ), which stays unchanged as data distribution is fixed
during training. Therefore, CS information is supposed to be maximized to the upper bound

𝐼(𝑥𝐼𝐷; 𝑌 ) because of Eq. 4.4. In this way, the closed-set classification task pushes the NN to

learn the sufficient representation 𝑧𝑠𝑢𝑓
𝐼𝐷 according to definition 1 [113].

IS InformationElimination. When 𝑧𝐼𝐷 is close to the sufficient representation 𝑧𝑠𝑢𝑓
𝐼𝐷 , the second

term in Eq. 4.5 will be the fix value 𝐼(𝑥𝐼𝐷; 𝑌 ) based on the definition 1. So the key to minimize
Eq. 4.5 is to minimize the first term 𝐼(𝑧𝑠𝑢𝑓

𝐼𝐷 ; 𝑥𝐼𝐷). Based on the definition 2, the lower bound of
𝐼(𝑧𝑠𝑢𝑓

𝐼𝐷 ; 𝑥𝐼𝐷) is 𝐼(𝑧𝑚𝑖𝑛
𝐼𝐷 ; 𝑥𝐼𝐷), so we can conclude that the learned representation is supposed to be

the minimum sufficient representation 𝑧𝑚𝑖𝑛
𝐼𝐷 [108]. We substitute 𝐼(𝑧𝑠𝑢𝑓

𝐼𝐷 ; 𝑥𝐼𝐷) and 𝐼(𝑧𝑚𝑖𝑛
𝐼𝐷 ; 𝑥𝐼𝐷)
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Class 1

Class 2

Original sample Shuffled sample

Class 1

Class 2

(a) Cross-entropy (b) PSL (ours)

Original sample
Shuffled sample
Prototype
Similarity=1
Similarity<1
Similarity=-1

Figure 4.3: (a) C.E. encourages the sample feature 𝑧 to be exactly same with the corresponding
prototype 𝑘𝑖. (b) Our PSL encourages the similarity between 𝑧 and 𝑘𝑖, features of shuffled
sample 𝑄𝑠ℎ𝑢𝑓 and other samples in the same class 𝑄𝑠𝑐 to have a similarity less than 1.

in definition 2 with Eq. 4.2 and we have

𝐼(𝑥𝐼𝐷; 𝑧𝑚𝑖𝑛
𝐼𝐷 |𝑌 ) + 𝐼(𝑧𝑚𝑖𝑛

𝐼𝐷 ; 𝑌 )

≤𝐼(𝑥𝐼𝐷; 𝑧𝑠𝑢𝑓
𝐼𝐷 |𝑌 ) + 𝐼(𝑧𝑠𝑢𝑓

𝐼𝐷 ; 𝑌 ). (4.6)

As both 𝑧𝑚𝑖𝑛
𝐼𝐷 and 𝑧𝑠𝑢𝑓

𝐼𝐷 are sufficient, the second term of both sides in Eq. 4.6 is 𝐼(𝑥𝐼𝐷; 𝑌 ), so
we have

0 ≤ 𝐼(𝑥𝐼𝐷; 𝑧𝑚𝑖𝑛
𝐼𝐷 |𝑌 ) ≤ 𝐼(𝑥𝐼𝐷; 𝑧𝑠𝑢𝑓

𝐼𝐷 |𝑌 ). (4.7)

Therefore, the learned IS information in 𝑧𝑚𝑖𝑛
𝐼𝐷 is smaller than any IS information in 𝑧𝑠𝑢𝑓

𝐼𝐷 , which

could be eliminated to 0 [108] (no blue and orange areas in 𝑧𝑚𝑖𝑛
𝐼𝐷 in Fig. 4.2).

4.2.5 Enlarge CS and IS Information for OSAR

Based on the analysis in Sec. 4.2.3 and Sec. 4.2.4, we show that C.E. tends to maximize the CS

information and eliminate the IS information in the feature representation. Both larger IS and

CS information are crucial for OSAR according to Eq. 4.3, but C.E. does not bring the optimal

information. On the one hand, IS information is eliminated so we lose a part of information

which is beneficial for the OSAR. On the other hand, the learned representation is not suffi-

cient and does not contain enough CS information in practice due to the model capacity and

data distribution shift between training and test sets, which can be supported by the fact that

test accuracy cannot reach 100%. Therefore, we propose our method to enlarge the CS and IS

information for better OSAR performance in next Sec. 4.3.
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4.3 Methods

4.3.1 Prototypical Similarity Learning

According to Sec. 4.2.3, we notice that IS information is suppressed by the C.E. loss and a

key reason is C.E. encourages feature representations of the same class to be exactly same.

Therefore, we argue that the feature representation of the same class samples should have a

similarity 𝑠 < 1. In other words, we aim to keep the intra-class variance which prevents intra-

class collapse to retain IS information. Based on the classical PL loss Eq. 4.1, we develop

prototypical similarity learning (PSL):

ℒ𝑃 𝑆𝐿 = − log
exp(

1−|𝑧𝑇 𝑘𝑖−𝑠|
𝜏 )

exp(
1−|𝑧𝑇 𝑘𝑖−𝑠|

𝜏 ) + ∑
𝑛∈𝐾−

𝑖

exp(
𝑧𝑇 𝑛

𝜏 )
, (4.8)

where 𝑠 and 𝜏 are fixed hyperparameters. In this way, we expect the prototype 𝑘𝑖 to act as the CS

information for the ID class 𝑖, which is used to predict the label, and the dissimilarity between
the 𝑧 and 𝑘𝑖 represents the IS information. Traditional PL loss (or C.E. loss) encourages the

features of samples in the same classes to be as tight as possible, while our PSL aims to keep

the variance within the same class.

However, we find Eq. 4.8 will converge to the trivial solution, where the 𝑧 converges to the
training result of Eq. 4.1 and only 𝑘𝑖 shifts. To solve this problem, we introduce the similarity

between different samples within a mini-batch into the denominator of Eq. 4.8. In this way,

we directly constrain the relationship between sample features instead of only supervising the

similarity between the sample feature and its prototype. We name the modified loss as PSL with

contrastive terms (CT):

ℒ𝐶𝑇
𝑃 𝑆𝐿 =

exp(
1−|𝑧𝑇 𝑘𝑖−𝑠|

𝜏 )

exp(
1−|𝑧𝑇 𝑘𝑖−𝑠|

𝜏 ) + ∑
𝑛∈𝑄𝑛

exp(
𝑧𝑇 𝑛

𝜏 ) + ∑
𝑝∈𝑄𝑠𝑝

exp(
|𝑧𝑇 𝑝−𝑠|

𝜏 )
, (4.9)

where𝑄𝑛 = 𝐾−
𝑖 ∪𝑄𝑛𝑠. 𝑄𝑛𝑠 refers to the negative samples, i.e., samples in other classes, and𝑄𝑠𝑝

refers to the soft positive samples which contains samples in the same class𝑄𝑠𝑐 here. The reason

we call soft positive samples is that we think samples in the same class share CS information
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but have distinct IS information.

4.3.2 Video Shuffling for PSL

PSL aims to keep IS information during training, and in this section we introduce how to en-

large CS information through video shuffling. The appearance bias is a significant problem in

the OSAR. For instance, the OOD classes Smile and Chew are easily classified as ID classes

ApplyEyeMakeup and ApplyLipstick, as the majority area of all these classes are occupied by

a face, as shown in Fig. 4.7. The NN is confused by the extremely similar spatial informa-

tion and neglects the minor different temporal information. This phenomenon encourages us

to strengthen the temporal information extraction ability of the NN to distinguish classes with

very similar appearances but different actions. We find that introducing a simple yet effective

way, i.e., to regard the shuffled video 𝑄𝑠ℎ𝑢𝑓 as the soft positive sample in Eq. 4.9, is extremely

suitable and useful in our PSL framework. In this case, 𝑄𝑠𝑝 = 𝑄𝑠𝑐 ∪ 𝑄𝑠ℎ𝑢𝑓 . Shuffled video

means shuffling the frames within a single video. As the appearance information of the shuf-

fled video is almost the same as the original video, a smaller than 1 similarity forces the NN to

learn the distinct temporal information between them. Unlike existing works which predict the

sequence or the type of the shuffled video [114–117], we regard the shuffle video as a whole

sample and directly compare its feature representation with the original video in our PSL. We

find this technique can improve the closed-set accuracy which indicates more CS information

is learned. We summarize the difference between our PSL and classical C.E. in Fig. 4.3.

4.3.3 Uncertainty Score

Uncertainty score is to determine whether the current sample is OOD or not based on Eq. 1.1.

As our PSL aims to learn richer CS and IS information in the feature representation, we use

the Mahalanobis distance to measure the uncertainty as it can be calculated from the feature

representation perspective [29, 118]:

𝑢 = (𝑧 − 𝜇𝑚)𝑇 ∑−1
𝑚 (𝑧 − 𝜇𝑚), (4.10)

where 𝜇𝑚 and ∑𝑚 denote the mean and covariance of the whole training set features, and 𝑧 is

the test sample feature.
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Table 4.1: Overlapping classes in HMDB51 and UCF101.

HMDB51 35, Shoot bow 29, Push up 15, Golf 26, Pull up
UCF101 2, Archery 71, PushUps 32, GolfSwing 69, PullUps

HMDB51 30, Ride bike 34, Shoot ball 43, Swing baseball 31, Ride horse
UCF101 10, Biking 7, Basketball 6, BaseballPitch 41, HorseRiding

4.4 Experiments

Datasets. We follow the datasets setting in [77]. The training ID dataset is UCF101, which

contains 101 classes with 9537 training samples and 3783 test samples. The OOD datasets for

open-set evaluation are HMDB51 and MiT-v2. We use the test sets of them which contain 1530

samples and 30500 samples respectively. For UCF101 and HMDB51, we follow the MMAc-

tion [119] to use the split 1 for training and evaluation, which is the same with [77]. Note that

in [77], they find some classes in HMDB51 overlap with those in UCF101 but they do not clean

them. We remove the overlapping classes in UCF101 and HMDB51 so that OOD data does not

contain any samples of ID classes. The classes we remove in HMDB51 and the corresponding

same classes in UCF101 are in Tab. 4.1.

Evaluation protocols. For closed-set performance, we evaluate like the traditional way to cal-

culate the top-1 accuracy Acc. (%). For open-set performance, we follow the classical open-set

recognition protocol [1, 45] to use the obtained uncertainty score Eq. 4.10 to calculate AUROC

(%), AUPR (%) and FPR95(%).1

Implementation details. For Kinetics400 (K400) [104] pretrained model, our implementation

setting is the same with [77]. The base learning rate is 0.001 and step-wisely decayed every 20

epochs with total of 50 epochs. We argue that as K400 is extremely large, the K400 pretrained

model may already have seen the OOD data used in inference, so we conduct experiments from

scratch (no ImageNet pretrained) to ensure that OOD data is absolutely unavailable during train-

ing. We use the LARS optimizer [120] and set the base learning rate and momentum as 0.6 and

0.9 with total of 400 epochs. The experiments are conducted on TSM [102], I3D [104] and

SlowFast [103]. The batch size for all methods is 256. More details are in Appendix C.
1We find AUROC in [77] only considers one specific threshold based on their code, and after discussion and

agreement they provide the modified correct score in our Tab. 4.2.
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Table 4.2: Comparison with state-of-the-art methods on HMDB51 and MiTv2 (OOD) using
TSM backbone. Acc. refers to closed-set accuracy. AUROC, AUPR and FPR95 are open-set
metrics. Best results are in bold and second best results in italic. DEAR and ourmethods contain
video-specific operation.

w/o K400 Pretrain w/ K400 Pretrain

Datasets Methods AUROC↑AUPR↑FPR95↓Acc.↑AUROC↑AUPR↑FPR95↓Acc.↑

UCF101 (ID)
HMDB51 (OOD)

OpenMax [78] 82.28 54.59 50.69 73.92 90.89 73.16 38.77 95.32
MC Dropout [27] 75.75 41.21 54.78 73.63 88.23 67.62 38.12 95.06
BNN SVI [80] 80.10 53.43 52.33 71.51 91.81 79.65 31.43 94.71
SoftMax [1] 79.72 52.13 53.22 73.92 91.75 77.69 28.60 95.03
RPL [79] 79.67 51.85 56.40 71.46 90.53 77.86 37.09 95.59
DEAR [77] 80.00 49.23 53.28 71.33 84.16 75.54 89.40 94.48
PSL(ours) 86.43 65.54 41.67 76.53 94.05 86.55 23.18 95.62

UCF101 (ID)
MiTv2 (OOD)

OpenMax [78] 84.43 76.69 47.74 73.92 93.34 88.14 28.95 95.32
MC Dropout [27] 75.66 62.20 51.57 73.63 88.71 83.36 39.46 95.06
BNN SVI [80] 79.48 71.73 52.52 71.51 91.86 90.12 36.21 94.71
SoftMax [1] 80.55 73.17 50.49 73.92 91.95 89.16 32.00 95.03
RPL [79] 80.21 72.04 52.83 71.46 90.64 88.79 38.43 95.59
DEAR [77] 79.00 67.10 52.44 71.33 86.04 87.38 87.40 94.48
PSL(ours) 86.53 79.95 40.99 76.53 95.75 94.96 18.96 95.62

4.4.1 Evaluation Results

Comparison with state-of-the-art. We report the results on HMDB51 (OOD) and MiT-v2

(OOD) using TSM [102], I3D [104] and SlowFast [103] backbones in Tab. 4.2, Tab. 4.3 and

Tab. 4.4. We can see that for w/ or w/o K400 pretrain, our PSL method has significantly better

open-set and closed-set performance than all baselines. The uncertainty distribution of ID and

OOD samples are depicted in Fig. 4.4 for MiT-v2 (OOD) with K400 pretrained. Three baseline

methods have a clear over confidence problem, i.e., the far left column is extremely high (red

circles in Fig. 4.4), which means a large number of OOD samples have almost 0 uncertainty,

while our method significantly alleviates this problem through the distinct representation of

OOD samples, illustrated in Fig. 4.5. Besides, we can find that the open-set performance w/

K400 pretrain is higher than w/o pretrain for almost all methods in Tab. 4.2 and Fig. 4.1 (a),

which can testify the importance of richer semantic representation for OSAR.

Comparison with metric learning methods. Our method concentrates on the feature represen-

tation aspect for the OSAR problem, so we also implement several well-known metric learning
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Table 4.3: OSAR performance under I3D backbone.

w/o K400 Pretrain w/ K400 Pretrain

Datasets Methods AUROC↑ AUPR↑ FPR95↓ Acc.↑ AUROC↑ AUPR↑ FPR95↓ Acc.↑

UCF101
HMDB51

OpenMax 83.78 54.65 47.60 74.42 92.03 77.72 41.02 95.01
MC Dropout 75.85 40.04 50.34 74.39 91.66 78.87 33.60 94.11
BNN SVI 81.53 53.62 49.18 73.15 91.57 78.65 34.60 93.89
SoftMax 81.24 54.21 48.20 74.42 91.28 79.73 34.18 94.11
RPL 79.80 52.09 54.07 71.62 92.49 81.72 28.89 94.26
DEAR 78.91 54.14 81.96 74.42 89.80 80.86 75.63 93.89
PSL(ours) 86.88 65.63 39.85 78.85 93.62 85.54 28.38 95.46

UCF101
MiTv2

OpenMax 86.33 77.49 44.40 74.63 93.29 90.17 29.84 94.90
MC Dropout 76.61 62.32 48.43 74.24 93.53 90.97 25.21 94.11
BNN SVI 83.13 76.20 48.63 73.15 93.52 91.24 25.34 93.89
SoftMax 82.58 74.91 46.39 74.63 92.62 90.87 30.55 94.11
RPL 81.47 73.98 49.62 71.89 93.69 92.04 25.97 94.26
DEAR 81.48 77.03 77.58 74.42 90.88 90.55 60.28 93.89
PSL(ours) 88.88 83.30 34.91 78.69 95.70 95.06 20.03 95.51

methods and show the result in Tab. 4.5. The evaluation is conducted using TSM model and

OOD dataset is HMDB51. We do not use video shuffling in our method for fair comparison.

We can see that our method still achieves the best open-set performance. The most important

difference between our method and all other metric learning methods is that they aim to push

the features of one class as tight as possible like C.E., while our method aims to keep the feature

variance within a class to retain IS information. We calculate the mean similarity between the

sample feature and the corresponding class center. The mean similarity ranges from 0.77 to 0.82

for other metric learning methods, while mean similarity is 0.71 (𝑠 = 0.8) and 0.6 (𝑠 = 0.6) for
our PSL. So our method has looser feature distribution within a class, as shown in Fig. 4.5.

4.4.2 Ablation Study

Contrastive terms in ℒ𝐶𝑇
𝑃 𝑆𝐿 for IS information. The intuition of PSL is to keep the intra-class

variance to retain the IS information which is helpful for OSAR. We expect that the representa-

tion 𝑧within a class has a similarity 𝑠 < 1with the prototype 𝑘𝑖, so each sample can keep its own

IS information. However, we find that the loss ℒ𝑃 𝑆𝐿 may lead the network to find the trivial

representation of samples 𝑧 which is similar to using loss ℒ𝑃 𝐿, where only 𝑘𝑖 shifts and 𝑧 does
not. We calculate the mean of similarity 𝑠𝑖𝑚(𝑧, ̄𝑧𝑖), where ̄𝑧𝑖 denotes the mean representation

35



Table 4.4: OSAR performance under SlowFast backbone.

w/o K400 Pretrain w/ K400 Pretrain

Datasets Methods AUROC↑ AUPR↑ FPR95↓ Acc.↑ AUROC↑ AUPR↑ FPR95↓ Acc.↑

UCF101
HMDB51

OpenMax 80.67 50.49 52.46 75.40 92.49 78.27 35.65 96.30
MC Dropout 76.10 41.37 50.82 75.16 91.83 77.71 29.82 96.70
BNN SVI 81.66 56.72 49.66 76.58 93.34 85.57 27.89 96.56
SoftMax 79.15 48.54 48.79 75.63 93.82 85.56 24.74 96.70
RPL 81.35 54.65 51.64 78.36 93.81 85.41 24.06 96.93
DEAR 78.00 49.38 68.49 76.21 92.28 87.09 62.99 96.48
PSL(ours) 86.20 64.65 42.48 79.40 95.24 89.76 18.72 96.52

UCF101
MiTv2

OpenMax 79.60 70.05 51.08 75.63 94.34 89.90 25.42 96.30
MC Dropout 75.88 63.12 51.40 75.63 93.43 90.43 24.52 96.70
BNN SVI 82.89 76.13 46.88 76.58 93.53 92.34 28.81 96.56
SoftMax 51.08 75.63 79.60 70.05 94.67 93.34 22.14 96.70
RPL 81.42 73.07 49.13 78.36 94.76 93.39 21.99 96.93
DEAR 78.21 69.30 62.02 76.21 92.60 93.09 59.98 96.48
PSL(ours) 85.00 77.08 43.16 79.40 96.81 96.22 14.52 96.52

of all samples in the same class 𝑖, and the mean of similarity with the corresponding prototype
𝑠𝑖𝑚(𝑧, 𝑘𝑖), as well as the feature variance in all dimensions. Fig. 4.6 (a) and (b) show that with

the hyper-parameter 𝑠 decreasing, the 𝑠𝑖𝑚(𝑧, 𝑘𝑖) decreases as expected by ℒ𝑃 𝑆𝐿 (green curves),

but the 𝑠𝑖𝑚(𝑧, ̄𝑧𝑖) and variance stay unchanged (blue curves), meaning that the representation of
samples are still similar with usingℒ𝑃 𝐿, and only the prototypes are pushed away by the sample

representations. In contrast, with CT in ℒ𝐶𝑇
𝑃 𝑆𝐿, the 𝑠𝑖𝑚(𝑧, ̄𝑧𝑖) decreases and variance increases

with 𝑠 decreases (red curves), indicating that CT is significantly effective to keep the intra-class
variance.

To individually study the effectiveness of 𝑄𝑛𝑠 and 𝑄𝑠𝑐 in ℒ𝐶𝑇
𝑃 𝑆𝐿, we provide the ablation

results in Tab. 4.6. For OOD samples, we calculate the similarity with the mean representation

of its predicted class. Tab. 4.6 shows that using 𝑄𝑛𝑠 alone can significantly increase the intra-

class variance for both ID and OOD samples, meaning the pushing effect of representations in

other classes can implicitly help retain the IS information. On top of that, 𝑄𝑠𝑐 can further learn

more IS information that is helpful to distinguish OOD samples, as the mean similarity of ID

samples stay unchanged, but OOD samples are smaller which means OOD samples are far away

from ID samples.

Shuffled videos for CS information. Tab. 4.6 shows that 𝑄𝑠ℎ𝑢𝑓 can improve both closed-set
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(a) SoftMax (b) DEAR

(c) BNN SVI (d) PSL (ours)

AUROC: 91.95
AUPR: 89.16 

AUROC: 86.04
AUPR: 87.38 

AUROC: 91.86
AUPR: 90.12 

AUROC: 95.75
AUPR: 94.96 

Figure 4.4: The uncertainty distribution of ID and OOD samples of (a) Softmax, (b) DEAR, (c)
BNN SVI and (d) our PSL method.

and open-set performance, which proves introducing shuffled videos in PSL can enlarge CS

information. Smaller intra-class variance brought by 𝑄𝑠ℎ𝑢𝑓 testify Proposition 1 that more CS

information means more similar features within the same class.

We draw the uncertainty of all classes in HMDB51, as shown in Fig. 4.7. Note that some

classes in HMDB51 are actually ID as they appear in the UCF101, like the class 3 golf and 4

shoot bow in Fig. 4.7. We find that in C.E. some OOD classes have extremely low uncertainty,

such as class 1 chew and 2 smile, because they are spatially similar to some ID classes like

ApplyEyeMakeup and ApplyLipstick in Fig. 4.7 (a). Comparing (b) and (c) shows that our PSL

can increase the average uncertainty of OOD classes (higher yellow points), and some OOD

classes which are similar to ID classes like 1 and 2 have much higher uncertainty in our PSL

method. After shuffled samples are involved, some ID classes whose uncertainty are increased

in (c) like 3 and 4 have lower uncertainty in (d), and the uncertainty of someOOD classes sharing

similar appearance with ID classes like class 1 is further improved.

𝑄𝑠𝑝 in Eq. 4.9 contains 𝑄𝑠ℎ𝑢𝑓 and 𝑄𝑠𝑐 , so we analyze whether should we assign the same

𝑠 for the shuffled video 𝑄𝑠ℎ𝑢𝑓 and other videos in the same class 𝑄𝑠𝑐 . Tab. 4.7 shows that the
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(a) Cross-entropy (b) PSL (ours)

:OoD samples :OoD samples

Figure 4.5: Feature representation visualization of cross-entropy and our PSL method. OOD
samples are in black and ID samples are in other colors. In the red, blue and green circles, it is
clear that OOD samples distribute at the edge of ID samples in our PSL, while greatly overlap
with each other in the cross-entropy method.

same 𝑠 have good enough performance. So we set the same 𝑠 for 𝑄𝑠ℎ𝑢𝑓 and 𝑄𝑠𝑐 in the default

setting to reduce the number of hyper-parameters.

4.4.3 Discussion

Both CS and IS information are useful. We provide the closed-set and open-set performance

under different hyper-parameter 𝑠 and feature dimension 𝑑 in Fig. 4.8. (a) shows that 𝑠 = 0.8
has better open-set performance than 𝑠 = 1 and has comparable closed-set accuracy, which

illustrates that retaining the IS information which is eliminated by C.E. (𝑠 = 1) is beneficial.
When 𝑠 < 0.8, the NN cannot learn enough CS information, so both closed-set and open-set

performance drops. Therefore, a propermixture of CS and IS information is ideal. (b) shows that

when 𝑑 grows from 4 to 16, more CS information is contained so that both closed-set and open-

set performance improves. When 𝑑 grows from 16 to 128, the feature does not include more

CS information as closed-set accuracy is comparable. However, open-set performance keeps

increasing which means more IS information is contained based on more feature dimensions.

This interesting experiment shows that enough information for closed-set recognition is not

enough for open-set recognition because IS information is not related to the closed-set task but

useful for the open-set task.

Feature variance and open-set performance analysis. Fig. 4.8 (a) shows that when features
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Table 4.5: Comparison with different metric learning methods.

AUROC↑ AUPR↑ FPR95↓ Acc.↑

SoftMax 80.95 52.79 52.51 72.36
Triplet [121] 81.02 54.75 53.88 75.50
Normface [122] 80.99 54.90 53.19 73.34
Circle [123] 78.76 51.65 55.27 72.15
Arcface [124] 81.23 55.03 53.67 75.95
LSoftMax [125] 80.87 54.01 52.29 73.05

PSL(𝑠 = 0.8) 83.42 59.05 51.32 72.28
PSL(𝑠 = 0.6) 82.75 58.57 52.27 73.26

Table 4.6: Abaltion results of different components in ℒ𝐶𝑇
𝑃 𝑆𝐿.

ID OOD

𝑠 𝑄𝑛𝑠 𝑄𝑠𝑐 𝑄𝑠ℎ𝑢𝑓 Mean Variance Mean Variance AUROC↑ AUPR↑ FPR95↓ Acc.↑

ℒ𝑃 𝐿 % % % % 0.81 0.0015 0.63 0.0029 80.95 52.79 52.51 72.36

ℒ𝑃 𝑆𝐿 ! % % % 0.79 0.0016 0.62 0.0028 81.79 54.16 52.33 72.33

ℒ𝐶𝑇
𝑃 𝑆𝐿

! ! % % 0.71 0.0022 0.61 0.0036 82.60 57.36 50.03 72.17

! ! ! % 0.71 0.0023 0.49 0.0035 83.42 59.05 51.32 72.28

! ! ! ! 0.74 0.0016 0.63 0.0029 86.43 65.58 41.75 77.19

get looser (𝑠 = 1 − 0.8), the open-set performance is improved, but if features get continually
looser (𝑠 = 0.8 − 0.1), the open-set performance drops. So there is no strict relation between the
feature variance and open-set performance. One may argue that continual training can benefit

the open-set performance [126], which is alongside with smaller feature variance [127]. We

show that the benefit of continual training comes from better closed-set performance, not tighter

features. Tab. 4.8 shows that when we train the model from 200 to 400 epochs, the closed-set

accuracy is higher, and feature is tighter (larger mean similarity and smaller variance), and the

open-set performance is better. But from epoch 400 to 800we find themodel is already overfitted

to the training set, as the accuracy of test set remains unchanged. So although the features get

tighter in the 800 epoch, both the closed-set and open-set performance remain same.

Representation analysis through singular value spectrum To deeply understand the feature

representations learned by our method, we analyze the representation through singular value
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Figure 4.6: Mean similarity and variance analysis for CT terms.

Table 4.7: Ablation study of similarity 𝑠 for 𝑄𝑠ℎ𝑢𝑓 and 𝑄𝑠𝑐 .

𝑠(𝑄𝑠ℎ𝑢𝑓 ) 𝑠(𝑄𝑠𝑐) AUROC↑ AUPR↑ FPR95↓ Acc.↑

0.7

0.7

85.25 63.91 48.34 76.98
0.5 86.03 64.36 43.70 76.53
0.3 83.80 60.42 48.76 75.50
0 79.54 50.59 54.43 72.59

0.8 0.8 86.43 65.58 41.75 76.53
0.9 0.9 83.12 57.04 46.84 73.31
1 1 82.04 53.82 51.82 72.89

spectrum. We first compute the covariance matrix 𝐶 ∈ ℝ𝑑×𝑑 of the embedding matrix:

𝐶 = 1
𝑀

𝑀

∑
𝑖=1

(𝑧𝑖 − ̄𝑧)(𝑧𝑖 − ̄𝑧)𝑇 , (4.11)

where 𝑧𝑖 and ̄𝑧𝑖 denote the feature representation of a sample and mean representation of all

samples respectively. 𝑀 is the total number of samples. Then we conduct singular value de-

composition on the matrix 𝐶 = 𝑈𝑆𝑉 𝑇 , 𝑆 = 𝑑𝑖𝑎𝑔(𝜎𝑘), and plot the singular values in sorted
order and logarithmic scale 𝑙𝑜𝑔(𝜎𝑘). We provide the singular value spectrum in Fig. 4.9.

PSL has larger singular values than the PL in the larger rank index, illustrating that more in-

formation is contained in the not significant dimensions, which is reasonable as PSL keeps the

IS information with no direct supervision signal, but these IS information does help for better
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Figure 4.7: (a) chew and smile are OOD samples from HMDB51, and ApplyEyeMakeup and
ApplyLipstick are ID samples from UCF101. (b-d) Uncertainty distribution of each class in
HMDB51. Class 1: chew, 2: smile, 3: golf, 4: shoot bow. Classes 1 and 2 are OOD while 3 and
4 are ID.

OSAR performance according to Tab. 4.6. PSL with shuffled samples 𝑄𝑠ℎ𝑢𝑓 has larger singu-

lar values than PSL in the small rank index, indicating more diverse information is learned in

the important dimensions, which are supposed to refer to CS information as CS information is

learned by the explicit supervision signal. The closed-set accuracy with 𝑄𝑠ℎ𝑢𝑓 is higher than

without 𝑄𝑠ℎ𝑢𝑓 in Tab. 4.6 further testifies our conclusion. In Tab. 4.6 we see that the represen-

tations of the same class are tighter with more CS information. Therefore, learning the distinct

temporal information from shuffled videos can enlarge the open-set task related CS information

while PSL can enlarge the IS information, which fulfills the goal to enlarge Eq. 4.3 for better

OSAR performance.

t-SNE visulization We provide the t-SNE visualization for straight understanding. All results

are based on HMDB (OOD) from scratch. We provide the visualization results of PSL, PSLwith

𝑄𝑛𝑠, PSLwith𝑄𝑛𝑠, 𝑄𝑠𝑐 , and PSLwith𝑄𝑛𝑠, 𝑄𝑠𝑐 , 𝑄𝑠ℎ𝑢𝑓 in Fig. 4.10, Fig. 4.11, Fig. 4.12, Fig. 4.13

respectively. From Fig. 4.10 we can see PSL alone cannot keep the intra-class variance when
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Figure 4.8: Ablation study of similarity 𝑠 and feature dimension 𝑑.

Table 4.8: Training process analysis when 𝑠 = 0.6 w/o 𝑄𝑠ℎ𝑢𝑓 .

Epoch Mean Variance AUROC↑ Acc-Test.↑ Acc-Train.↑

200 0.577 3.3e-3 75.08 68.39 99.85
400 0.602 3.1e-3 82.92 73.26 100
800 0.613 3.0e-3 82.54 73.29 100

𝑠 decreases. Fig. 4.11 and Fig. 4.12 tell us that 𝑄𝑛𝑠 and 𝑄𝑠𝑐 are important for PSL to keep the

intra-class variance. Furthermore, 𝑄𝑠ℎ𝑢𝑓 makes the feature representation tighter if we compare

Fig. 4.12 and Fig. 4.13, which shows the model learns more CS information with 𝑄𝑠ℎ𝑢𝑓 .
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(a) InD (b) OoD (c) OoD (d) InD

Figure 4.9: Singular value spectrum on HMDB51 (OOD) under different training conditions
(a)-(c) and hyper-parameter 𝑠 (d). (c) contains the top 20 singular values in (b).

(a) similarity=1 (b) similarity=0.7 (c) similarity=0.5

:OoD samples

Figure 4.10: t-SNE visualization of PSL.
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(a) similarity=0.9 (b) similarity=0.8 (c) similarity=0.7

:OoD samples

Figure 4.11: t-SNE visualization of PSL with 𝑄𝑛𝑠.

:OoD samples

(a) similarity=1 (b) similarity=0.9 (c) similarity=0.8

(d) similarity=0.7 (e) similarity=0.6 (f) similarity=0.5

Figure 4.12: t-SNE visualization of PSL with 𝑄𝑛𝑠, 𝑄𝑠𝑐 .
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:OoD samples

(a) similarity=1 (b) similarity=0.9 (c) similarity=0.8

(d) similarity=0.7 (e) similarity=0.6 (f) similarity=0.5

Figure 4.13: t-SNE visualization of PSL with 𝑄𝑛𝑠, 𝑄𝑠𝑐 , 𝑄𝑠ℎ𝑢𝑓 .

4.5 ID and OOD uncertainty distribution

We provide the ID and OOD distribution on HMDB51 (OOD) and MiT-v2 (OOD) with K400

pretrain and without K400 pretrain. All results are based on TSM backbone for illustration. The

results are shown in Fig. 4.14, Fig. 4.15, Fig. 4.16, and Fig. 4.17.

From Fig. 4.14 and Fig. 4.16 we can see that if there is no K400 pretrain, all methods have the

overlapping uncertainty between ID and OOD distribution except OpenMax and our PSL. For

instance, Fig. 4.14 (f) DEAR [77] shows the uncertainty of ID and OOD samples both cover the

range from 0 to 1. In contrast, Fig. 4.14 (g) PSL shows that in our method, the ID distribution

covers from 0 to 0.3, while the OOD distribution covers from 0 to 0.8. It means our method

tends to assign higher uncertainty to OOD samples. For OpenMax, Fig. 4.14 (a) shows that

ID uncertainy distribution is extremely close to 0, which is a good phenomenon, but the OOD

uncertainty distribution only covers from 0 to 0.3, and the OOD samples whose uncertainty is

larger than 0.3 is too sparse, which means OpenMax tends to assign low uncertainty to both ID

and OOD samples, but assigner lower uncertainty to ID samples.

If we compare Fig. 4.14 to Fig. 4.15 or compare Fig. 4.16 to Fig. 4.17, we can find that the

ID distribution of all methods are closer to 0 with K400 pretrain. But all methods except our
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(a) OpenMax (b) MC Dropout (c) BNN SVI (d) SoftMax

(e) RPL (f) DEAR (g) PSL (ours)

Figure 4.14: Uncertainty distribution on HMDB51 (OOD) w/o K400 pretrain.

(a) OpenMax (b) MC Dropout (c) BNN SVI (d) SoftMax

(e) RPL (f) DEAR (g) PSL (ours)

Figure 4.15: Uncertainty distribution on HMDB51 (OOD) w/ K400 pretrain.

PSL have a serious over confidence problem, which is illustrated by the fact that the far left

column of OOD samples is extremely high, which is also emphasized through the red circles in

Fig. 4.4. In contrast, the density of OOD distribution is highest at 0.2 uncertainty in our PSL

method, and the density of OOD distribution is almost 0 at 0 uncertainty. Besides, it is very

clear that the OOD distribution and ID distribution in our PSL is most distinguishable among

all methods.

4.6 Conclusion

We analyze the OSAR problem from the information perspective, and show that cross-entropy

tends to eliminate IS information and cannot fully learns CS information which are both useful

for the open-set task. So we propose PSL to retain IS information and introduce shuffle videos

into PSL to enlarge CS information. Comprehensive experiments demonstrate the effectiveness
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(a) OpenMax (b) MC Dropout (c) BNN SVI (d) SoftMax

(e) RPL (f) DEAR (g) PSL (ours)

Figure 4.16: Uncertainty distribution on MiT-v2 (OOD) w/o K400 pretrain.

(a) OpenMax (b) MC Dropout (c) BNN SVI (d) SoftMax

(e) RPL (f) DEAR (g) PSL (ours)

Figure 4.17: Uncertainty distribution on MiT-v2 (OOD) w/ K400 pretrain.

of our PSL and the importance of IS and CS information in the OSAR task.
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CHAPTER 5

TOWARDS UNIFIED OPEN-SET RECOGNITION

5.1 Introduction

Neural networks have achieved tremendous success in the closed-set classification [128], where

the test samples share the same In-Distribution (ID) class set with training samples. Open-Set

Recognition (OSR) [129] is proposed to tackle the challenge that some samples whose classes

are not seen during training, which are Out-of-Distribution (OOD) data, may occur in the real

world applications and should be rejected. However, some researchers have argued that the

model should not only reject OOD samples but also ID samples that are Wrongly classified

(InW), as the model gives the wrong answers for both of them. So Unified Open-set Recognition

(UOSR) is proposed to only accept ID samples that are correctly classified (InC) and reject OOD

and InW samples [130] simultaneously. The difference between the UOSR and OSR lies in the

InW samples, where OSR is supposed to accept them while UOSR has the opposite purpose.

Actually, UOSR is more useful in most real-world applications, but it receives little attention

from the research community as it has been proposed very recently and lacks comprehensive

systematic research. Therefore, we deeply analyze the UOSR problem in this work to fill this

gap.

We first apply existing OSR methods for UOSR in Sec. 5.3, and then analyze UOSR un-

der different training settings and evaluation settings in Sec. 5.4 and Sec. 5.5 respectively. In

Sec. 5.3, several existing OSR methods are applied for UOSR, and we find that the UOSR per-

formance is consistently and significantly better than the OSR performance for the samemethod,

as shown in Fig. 5.1 (a). We show that this phenomenon holds for different network architec-

tures, datasets, and domains (image and video recognition). We find the devil is in the InW

samples that have similar uncertainty distribution with OOD samples rather than InC samples.

Therefore, the false positive predictions in OSR tend to be InW samples, which is extremely

important but dismissed by all existing OSR works.

In Sec. 5.4, we introduce two training settings into UOSR, including pre-training [131] and

outlier exposure [45, 132, 133], as they are both helpers of the OSR that introduce extra infor-

mation beyond the training set. Pre-training is to use the weights that are trained on a large-scale
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TS w/ OE
TP w/ OE
TP w/ FS 

(Ours)

(a) (b)

(Sec. 3)

(Sec. 4)
(Sec. 5)

Sec. 5.3

Sec. 5.4
Sec. 5.5

Figure 5.1: (a) shows that the UOSR performance is significantly better than OSR performance
for the same method, which illustrates the uncertainty distribution of these OSR methods is
actually closer to the expectation of UOSR than OSR. (b) shows the UOSR performance under
different settings and the skeleton of this paper. Results are based on the ResNet50 backbone.
CIFAR100 and TinyImageNet are ID and OOD datasets, respectively. (TS: Train from Scratch.
TP: Train from Pre-training. OE: Outlier Exposure. FS: Few-shot.)

dataset for better down-task performance, and outlier exposure is to introduce some background

data without labels into training to help the model classify ID and OOD samples. We find both

of them have better performance for InC/OOD discrimination, which explains why they are ben-

eficial for OSR. However, pre-training is also helpful for InC/InW discrimination, while outlier

exposure has a comparable or even worse performance to distinguish InC and InW samples. The

performance of UOSR can be regarded as the comprehensive results of InC/OOD and InC/InW

discrimination so that both techniques can boost the performance of UOSR. We build up a com-

prehensive UOSR benchmark that involves both pre-training and outlier exposure settings, as

shown in Fig. 5.1 (b).

In addition to the two aforementioned training settings, we introduce a new evaluation set-

ting into UOSR in Sec. 5.5. We formulate the few-shot UOSR, similar to SSD [118] that pro-

poses few-shot OSR, where 1 or 5 samples per OOD class are introduced for reference to better

identify OOD samples. We first develop a KNN-based baseline [31] FS-KNN for the few-shot

UOSR. Although InC/OOD discrimination is improved due to the introduced OOD reference

samples, the InC/InW discrimination is severely harmed compared to SoftMax baseline [1]. To

alleviate this problem, we propose FS-KNNS that dynamically fuses the FS-KNN with Soft-

Max uncertainty scores to keep high InC/InW and InC/OOD performance simultaneously. Our

FS-KNNS achieves state-of-the-art performance under all settings in the UOSR benchmark,

as shown in Fig. 5.1 (b), even without outlier exposure during training. Note that InC/OOD

performances are comparable between FS-KNNS and FS-KNN, but their distinct InC/InW per-
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Table 5.1: Comparison of uncertainty-related task settings. Cls: Classification. 0 and 1 refer to
the corresponding ground truth uncertainty 𝑢, and 𝑢 is not fixed in MC.

InC InW OOD Ordinal Rank ID Cls
SP 0 1 % ! !

AD/OD 0 0 1 ! %

OSR 0 0 1 ! !

UOSR 0 1 1 ! !

MC - - % % !

formances makes FS-KNN better at OSR and FS-KNNS better at UOSR, which illustrates the

difference between few-shot OSR and UOSR and the importance of InW samples during eval-

uation.

5.2 Towards Unified Open-set Recognition

In this section, we first formalize the UOSR problem and then discuss the relation between

UOSR and other uncertainty-related tasks.

Unified Open-set Recognition. Suppose the training dataset is 𝒟train = {(𝐱𝑖, 𝑦𝑖)}𝑁
𝑖=1 ⊂ 𝒳 × 𝒞,

where𝒳 refers to the input space, e.g., images or videos, and𝒞 refers to the ID sets. In closed-set

recognition, all test samples come from the ID sets, i.e.,𝒟closed
test = {(𝐱𝑖, 𝑦𝑖)}𝑀

𝑖=1 ⊂ 𝒳×𝒞. In OSR
and UOSR, the test samples may come from OOD sets 𝒰 which are not overlap with ID sets 𝒞,
so we have 𝒟open

test = 𝒟closed
test ∪ 𝒟unknown

test , where 𝒟unknown
test = {(𝐱𝑖, 𝑦𝑖)}𝑀′

𝑖=1 ⊂ 𝒳 × 𝒰. The ID test

samples𝒟closed
test can be divided into two splits based on whether the sample is correctly classified

or wrongly classified, i.e., 𝒟closed
test = 𝒟closed-c

test ∪ 𝒟closed-w
test , where 𝒟closed-c

test = {(𝐱𝑖, 𝑦𝑖)| ̂𝑦𝑖 =
𝑦𝑖}𝑀

𝑖=1, 𝒟closed-w
test = {(𝐱𝑖, 𝑦𝑖)| ̂𝑦𝑖 ≠ 𝑦𝑖}𝑀

𝑖=1, and ̂𝑦𝑖 refers to the model classification results of

sample 𝐱𝑖. The goal of UOSR is to reject InW and OOD samples and accept InC samples, so the

ground truth uncertainty 𝑢 of 𝒟closed-w
test and 𝒟unknown

test is 1 while for 𝒟closed-c
test it is 0, as shown in

Tab. 5.1. The key of UOSR is how to estimate the uncertainty ̂𝑢 to be close to the ground truth
uncertainty 𝑢.

The UOSR is proposed by [130] very recently, so it has not attracted many researchers to

this problem yet. SIRC [134] augments SoftMax [1] baseline for the better UOSR performance.

Build upon these existing methods, we make a deep analysis of UOSR in this work. In Tab. 5.1,

we compare different settings of the related uncertainty estimation tasks, and the detailed dis-

cussions are as follows.

Selective Prediction (SP).Apart from the classical classification, SP also tries to estimate which
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sample is wrongly classified [135–137], so the ground truth uncertainty of InW is 1. SP is

constrained under the closed-set scenario and does not consider OOD samples during evaluation,

as shown in Tab. 5.1, which is the key difference with UOSR. We involve some SP methods in

the UOSR benchmark in Sec. 5.4.

Anomaly/Outlier Detection (AD/OD). AD is to detect anomaly patches within an image or

anomaly events within a video [138, 139]. OD regards a whole dataset as ID and samples from

other datasets as OOD [140, 141]. Both AD and OD do not require ID classification, so there is

no InC/InW discrimination problem.

Open-set Recognition (OSR) and Out-of-distribution Detection (OODD). The task settings

of OSR and OOD detection are same, but their datasets might be different. Both of them aim to

accept all ID samples no matter they are InC or InW samples, and reject OOD samples. OSR

divides one dataset into two splits and uses one of them as ID data to train the model, while

another split is regarded as OOD samples [129]. In contrast, OODD uses a whole dataset as ID

data and regards another dataset as OOD data [1]. However, in the recent works about OSR in

the video domain [77], it utilizes the OODD setting rather than the OSR setting. In this work,

we use OSR to represent the task setting and use one dataset as ID data and another dataset

as OOD data. As mentioned before, the distinction between UOSR and OSR is InW samples,

where OSR aims to accept them, and UOSR aims to reject them, so the ground truth uncertainty

of InW samples is 0 in OSR and 1 in UOSR, as shown in Tab. 5.1. Better InC/OOD performance

is beneficial for both UOSR and OSR, but higher InC/InW discrimination is preferred by UOSR

but not wanted by OSR.

Model Calibration (MC). All tasks mentioned above solve the uncertainty ordinal ranking

problem, i.e., the ground truth uncertainty of each type of data is fixed, and the performance

will be better if the estimated uncertainty is closer to the ground truth uncertainty [142]. In

contrast, MC uses uncertainty to measure the probability of correctness [143].

A perfect calibrated model should meet [143]:

𝑃 ( ̂𝑦 = 𝑦|𝑓(𝑥) = 𝑝) = 𝑝, ∀𝑝 ∈ [0, 1], (5.1)

where 𝑝 is the confidence or the negative version of uncertainty 𝑝 = 1 − 𝑢. For example, given
100 test samples whose confidence scores are all 0.8, then the model is perfectly calibrated if

80% samples are correctly classified. In this case, 20% samples with confidence 0.8 is con-

sistent with the requirement of a perfect calibrated model. Different from Selective Prediction

(SP), Anomaly Detection (AD), OSR, and UOSR, Model Calibration (MC) is not an uncertainty
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Figure 5.2: We provide 5 samples in (a)-(e), where we keep the confidence distribution of InC
and change the confidence distribution of InW samples. The evaluation metrics of UOSR are
AUROC and AUPR, and ECE is for the MC.

ordinal ranking problem. In other words, all other settings expect the uncertainty of a test sam-

ple to be either 0 or 1, while MC is not. The performance of MC is evaluated by ECE, and

the readers may refer to [143] for the formal definition. Smaller ECE means better calibrated

model. We provide 5 examples to illustrate the relation between the performance of UOSR and

MC in Fig. 5.2. Note that MC does not consider OOD samples during evaluation, so we also do

not involve OOD samples in Fig. 5.2. Therefore, UOSR in Fig. 5.2 is also equal to SP. From

(f) we can see that the performance of UOSR and model calibration is not perfectly positively

correlated, i.e., the best case for model calibration (c) is not the best case for UOSR and vice

versa (e).

5.3 OSR Approaches for UOSR

In this section, we evaluate the existing OSR approaches for the UOSR problem, and show

that the InW samples play a crucial role when evaluating the uncertainty quality. Specifically,

simply changing the ground truth uncertainty 𝑢 of InW samples from 0 to 1 can bring a large

performance boost, as shown in Fig. 5.3. Then we provide the comprehensive experiment results

and discussion of this phenomenon.

Applied Methods. We reproduce several classical OSR methods and evaluate their UOSR and

OSR performance in our experiments, including SoftMax [1], ODIN [144], LC [145], Open-

Max [146], OLTR [147] and PROSER [148] in the image domain, as well as DEAR [77],

RPL [149], MC Dropout [150] and BNN SVI [151] in the video domain.

Datasets. In the image domain, we follow the datasets setting in [144]. The training ID dataset

is CIFAR-100 [152], which contains 100 classes with 50000 training images and 10000 test

images. The OOD datasets for open-set evaluation are TinyImageNet [153] and LSUN [154].
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Figure 5.3: (a) and (b) show the relation between UOSR and OSR performance in the image
and video domain under ResNet50 and TSMbackbones. Different color indicates different OOD
datasets. The red-dotted diagonal is where UOSR has the same AUROC as OSR. Green arrows
show the performance gap between UOSR and OSR for the same method.

The TinyImageNet dataset contains 10000 test images from 200 different classes, we use the

TinyImageNet (resize) in [144]. The Large-scale SceneUNderstanding (LSUN) dataset consists

of 10000 images of 10 different scenes categories like classroom, conference room, dining room,

etc. We use LSUN (resize) from [144]. The size of images in both ID and OOD datasets is 32

× 32. We use the same strategy in image preprocessing stage as [155], if the resolution of the

training image is lower than 96 × 96, we use 128 × 128 image cropping technique and random

horizontal mirroring followed by 160 × 160 image resize. Test images and OOD images are

directly resized to 128 × 128. In the video domain, we follow the datasets setting in [77]. The

training ID dataset is UCF101 [156], which contains 101 classes with 9537 training samples

and 3783 test samples. The OOD datasets for open-set evaluation are HMDB51 [157] and

MiTv2 [158]. We use the test sets of them which contain 1530 samples and 30500 samples

respectively. For UCF101 and HMDB51, we follow the MMAction [119] to use the split 1 for

training and evaluation, which is the same with [77].

Experiments settings. We train the network using the ID dataset and evaluate the UOSR and

OSR performance based on the ground truth in Tab. 5.1. The evaluation metric is AUROC [1]

which is a threshold-free value. The AUROC reflects the distinction quality of two uncertainty

distributions. We adopt VGG13 [159] and ResNet50 [160] as the network backbone in the image

domain and TSM [161] and I3D [104] in the video domain.

Results. We provide the UOSR and OSR performance of different methods in Fig. 5.3 and

Fig. 5.4. They show that all data points are above the red dotted diagonal, illustrating that the

UOSR performance is significantly better than the OSR performance of the same method, and
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Figure 5.4: (a) and (b) are conducted using the VGG13 and I3D backbone in the image and
video domain respectively. ID datasets are CIFAR100 and UCF101 for (a) and (b), and OOD
datasets are shown with different colors.

Table 5.2: Uncertainty distribution analysis in image domain with ResNet50. OOD dataset:
TinyImageNet. AUROC (%) is reported.

Methods InC/OOD InC/InW InW/OOD OSR UOSR

SoftMax 84.69 85.68 50.64 75.59 84.90
ODIN 88.35 80.76 64.36 81.65 86.69
LC 84.60 82.58 55.14 76.37 84.16
OpenMax 85.16 85.96 51.27 76.23 85.33
OLTR 85.99 85.74 52.22 77.10 85.94
PROSER 87.04 77.84 62.57 79.23 84.82

this relationship holds across different datasets, domains (image and video), and network archi-

tectures. The performance gap between UOSR and OSR of the same method can be very large,

such as 8.84% for OLTR when TinyImageNet is the OOD dataset, and 10.16% for BNN SVI

when the OOD dataset is MiTv2. Therefore, existing OSR methods have uncertainty distribu-

tions that are actually closer to the expectation of UOSR than OSR.

Analysis. To better understand our findings, we provide a detailed analysis of the uncertainty

distribution relationships between InC, InW, and OOD samples in Tab. 5.2 and Tab. 5.3. Note

that higher AUROC means a better distinction between two uncertainty distributions, and AU-

ROC=50% means two distributions overlap with each other. From Tab. 5.2 and Tab. 5.3 we

can clearly see that AUROC of InC/OOD and InC/InW are significantly higher than InW/OOD,

and AUROC of InW/OOD is very close to 50%. Therefore, the uncertainty distribution of InC

samples is distinguishable from OOD and InW samples, and there is a lot of overlap between

the uncertainty distributions of InW and OOD samples. Several uncertainty distribution visual-

54



Table 5.3: Uncertainty distribution analysis in video domain with TSM backbone. OOD dataset
is HMDB51. AUROC (%) is reported.

Methods InC/OOD InC/InW InW/OOD OSR UOSR

OpenMax 88.56 82.53 64.47 82.27 85.95
Dropout 85.36 85.86 48.92 75.75 85.58
BNN SVI 89.93 88.85 55.44 80.10 89.44
SoftMax 88.73 88.01 54.19 79.72 88.42
RPL 89.22 88.06 55.74 79.67 88.70
DEAR 89.33 85.47 56.78 80.00 87.56

(a) (b) (c) (d)

Figure 5.5: (a) and (b) are the SoftMax and ODIN methods in the image domain, while (c) and
(d) are the SoftMax and DEAR methods in the video domain. OOD datasets are TinyImageNet
for the image domain and HMDB51 for the video domain.

izations are in Fig. 5.5, where we can see that InW and OOD samples share a similar uncertainty

distribution, while InC samples have smaller uncertainty.

Importance. Based on the above analysis, we conclude that the false positive predictions in

OSR tend to be InW samples, since they share similar uncertainty distributions with OOD sam-

ples. This conclusion is extremely important as InW samples significantly deteriorate the OSR

performance. Without InW samples, the OSR performance increases by a large margin (75.59

to 84.69 for SoftMax method in Tab. 5.2). However, no existing OSR works mentioned and

considered this phenomenon. We explicitly point out this conclusion and hope the following

researchers take it into account when they design new OSR or UOSR methods.

Why? To deeply understand why InW samples share similar uncertainty distribution with OOD

samples instead of InC samples, we begin by analyzing the feature distributions of InC/In-

W/OOD samples. We first find that the features of InC/InW/OOD follow the hierarchy structure

where InC/InW/OOD samples are gradually far away from the training samples, so their fea-

tures are separable. Please see Fig. 5.6 and Fig. 5.7 for reference. Then we calculate the feature

similarity and surprisingly find that InW features are more similar to InC features rather than

OOD features in Tab. 5.4, which contradicts the uncertainty score phenomenon. Therefore, the

reason that InW samples have similar uncertainty scores with OOD samples is not they have
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Figure 5.7: Similarity between with training samples of each class.

similar features, but lies in the uncertainty estimation methods. The details are as follows.

Features of InC/InW/OOD samples are separable. We visualize the feature representations

in Fig 5.6. We find the feature distribution of InC, InW and OOD samples follow a hierarchy

structure. The InW samples surround the InC samples, and OOD samples are further far away

and located at the outer edge of InW samples, such as three distributions of class A and B in

Fig 5.6 (b). Therefore, the features of InC, InW, and OOD samples are separable from the fea-

ture representation perspective. To further testify this idea, we calculate the similarity between

InC/InW/OOD samples and training samples of each class, as shown in Fig. 5.7. We can see

that the InC samples are the most similar samples with training samples, and InW samples have

smaller similarity, and OOD samples have the smallest similarity. In conclusion, features of

InC/InW/OOD samples are in a hierarchy structure and distinguishable.

Features of InW samples are more similar with InC samples than OOD samples. Our
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Table 5.4: We provide the feature similarity of InW/InC and InW/OOD, the mean of uncertainty
score, and the AUROC of InW/InC and InW/OOD in this table.

Similarity Uncertainty Discrimination (AUROC)

InW/InC InW/OOD InC InW OOD InW/InC InW/OOD

Feature space 0.797 0.733 0.057 0.158 0.179 84.91 57.25
Logit space 0.718 0.571 0.314 0.537 0.583 83.36 57.95

finding in Sec. 5.3 is that InW samples share similar uncertainty scores with OOD samples

rather than InC samples, so we analyze whether the feature representation also follows the same

behavior. We calculate the similarity between InW/InC samples and InW/OOD samples in the

feature space and logit space. Then we provide themean of uncertainty scores based on the KNN

method and MaxLogit method, as well as the AUROC of InW/InC and InW/OOD to illustrate

the uncertainty discrimination performance. In Tab. 5.4 we can see that the similarity of InW/InC

is larger than InW/OOD (0.797-0.733), which means InW samples have more similar features

with InC samples than OOD samples. However, the uncertainty scores of InW samples are

more similar with OOD scores than InC samples (0.158/0.179-0.057), so that InW/OOD can not

be distinguished very well like InW/InC (57.25-84.91). Therefore, we draw a very interesting

conclusion that the feature behavior and uncertainty score behavior of InW/InC and InW/OOD

are contradictory. InW samples are more similar to InC samples in the feature/logit space but

more similar to OOD samples from the uncertainty score perspective.

Let us formulate this phenomenon mathematically. Suppose we have 𝑥𝑐 , 𝑥𝑤, 𝑥𝑜 which rep-

resents the feature of an InC, InW, and OOD sample, respectively. From Tab. 5.4 we know

that

𝑠𝑖𝑚(𝑥𝑤, 𝑥𝑐) > 𝑠𝑖𝑚(𝑥𝑤, 𝑥𝑜), (5.2)

where 𝑠𝑖𝑚 refers to the similarity. Then, we have an uncertainty estimation function𝑓 tomeasure

the uncertainty 𝑢 of a sample based on the features, so 𝑢𝑐 = 𝑓(𝑥𝑐), 𝑢𝑤 = 𝑓(𝑥𝑤), 𝑢𝑜 = 𝑓(𝑥𝑜).
Based on our finding in Fig. 5.5 that InW samples share similar uncertainty distribution with

OOD samples rather than InC samples, we have

𝑠𝑖𝑚(𝑢𝑤, 𝑢𝑐) < 𝑠𝑖𝑚(𝑢𝑤, 𝑢𝑜), or 𝑠𝑖𝑚(𝑓(𝑥𝑤), 𝑓 (𝑥𝑐)) < 𝑠𝑖𝑚(𝑓(𝑥𝑤), 𝑓 (𝑥𝑜)). (5.3)

Comparing Eq. 5.3 and Eq. 5.2 we find that the uncertainty estimation function 𝑓 changes the

similarity relationship between InW/InC and InW/OOD.

Let us give a toy example of how 𝑓 changes the similarity relationship. Suppose the logit

57



𝑂 𝑠

𝑡

𝑥!

𝑥"

𝑥#

(a)

𝑢

𝑓 𝑥 = −𝑠

𝑓(𝑥#)

𝑓(𝑥")
𝑓(𝑥!)

Uncertainty

𝑂 𝑠

𝑡

𝑥!

𝑥"

𝑥#

(b)

𝑢

𝑓 𝑥 = 𝑡/𝑠

𝑓(𝑥#)

𝑓(𝑥")

𝑓(𝑥!)

Uncertainty

Figure 5.8: (a): 𝑥𝑤 is close to 𝑥𝑐 in (𝑠, 𝑡) space, but 𝑓(𝑥𝑤) is close to 𝑓(𝑥𝑜) in uncertainty space;
(b) 𝑥𝑤 is close to 𝑥𝑐 in (𝑠, 𝑡) space, and 𝑓(𝑥𝑤) is also close to 𝑓(𝑥𝑐) in uncertainty space.

space is under 2 dimensions (𝑠, 𝑡), and 𝑥𝑐 = (2, 2), 𝑥𝑤 = (1, 1), 𝑥𝑜 = (1, 3). The similarity

is measured with Euclidean distance, and in this case 𝑥𝑤 is closer to 𝑥𝑐 , so Eq. 5.2 holds for

this example. If 𝑓(𝑥) = −𝑠 like Fig. 5.8 (a), then 𝑢𝑐 = −2, 𝑢𝑤 = −1, 𝑢𝑜 = −1. In this

case, 𝑢𝑤 = 𝑢𝑜 > 𝑢𝑐 . So the uncertainty score of InW sample is similar with OOD sample

instead of InC sample. This example illustrates why an InW sample has a similar feature to

an InC sample, but has a similar uncertainty score with OOD sample. This is how existing

uncertainty estimation methods work, as the results in Fig. 5.5 show that InW samples have

similar uncertainty distribution with OOD samples. This kind of method is suitable for UOSR

problem where InW and OOD samples are supposed to be rejected at the same time.

We provide another uncertainty estimation function 𝑓 in Fig. 5.8 (b), where 𝑓(𝑥) = 𝑡/𝑠. In
this case, 𝑢𝑤 = 𝑢𝑐 = 1 < 𝑢𝑜 = 3, so the uncertainty score of the InW sample is similar to the

InC sample instead of the OOD sample. This is the ideal case for the traditional OSR problem

to reject OOD samples and accept InC and InW samples.

UOSR benchmark under different training set. We provide the UOSR evaluation results in

Tab. 5.5 when ID andOOD datasets are TinyImageNet and CIFAR100 respectively. Pre-training

weights are used. TinyImageNet has 200 classes in the training set which is more diverse than

CIFAR100. We can see that training the model on TinyImageNet is more challenging than

CIFAR100, as the Acc. of CIFAR100 is 86.44 and Acc. of TinyImageNet only reaches 77.02.

In this way, the impact of InW samples becomes further huge. For example, the performance gap

between UOSR and OSR for the SoftMax method is 8.95 when ID dataset is TinyImageNet, and

this value is only 0.34 when ID dataset is CIFAR100. So the InW samples are more important

for the performance when ID dataset is difficult, as lower closed-set Acc. means more InW

samples.
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Table 5.5: Unified open-set recognition benchmark in the image domain. All methods are con-
ducted under the R50 model. ID and OOD Dataset are TinyImageNet and CIFAR100 respec-
tively. †, ‡,♢ refer to OSR-based, SP-based, UOSR-based methods. Pre-training weights are
used.

UOSR OSR InC/InW InC/OOD InW/OOD

Methods Acc.↑ AURC↓ AUROC↑ AUROC↑ AUROC↑ AUROC↑ AUROC↑

SoftMax† 77.02 340.70 86.22 77.27 88.83 85.62 49.27
ODIN† 77.23 359.57 84.01 75.32 86.53 83.43 47.81
LC† 77.23 385.15 79.76 71.85 83.21 78.98 47.69
OpenMax† 76.90 340.21 86.53 77.09 89.63 85.81 48.04
OLTR† 77.00 341.60 86.04 76.75 89.02 85.36 47.92
PROSER† 75.93 392.91 80.50 74.65 79.20 80.50 55.20

BCE‡ 76.91 339.43 86.40 76.83 89.64 85.66 47.44
TCP‡ 77.82 336.61 86.48 77.47 89.72 85.76 48.38
DOCTOR‡ 77.23 339.02 86.69 77.62 89.86 85.96 49.30

SIRC(MSP, ‖𝑧‖1)♢ 77.03 337.28 86.82 78.86 88.78 86.37 53.65
SIRC(MSP, Res.)♢ 77.03 316.14 90.66 87.00 88.82 91.08 73.31
SIRC(−ℋ, ‖𝑧‖1)♢ 77.03 333.73 87.60 80.13 89.00 87.28 56.19
SIRC(−ℋ, Res.)♢ 77.03 311.98 91.39 88.20 89.02 91.94 75.67

Table 5.6: Relation between closed-set accuracy Acc. (%) and open-set performance. Aug:
Augmentation; Ep: Epoch. AUROC (%) is reported.

Aug. Ep. Acc. InC/OOD InC/InW OSR UOSR
% 100 59.41 81.65 82.47 68.64 81.89
! 100 68.83 84.18 85.13 73.71 84.40
! 300 73.28 84.69 85.68 75.59 84.90

A better closed-set model is better for UOSR. Recently, [126] found that better closed-set

performance means better OSR performance. We provide a deeper explanation of this finding

and show that this conclusion also holds for UOSR. Tab. 5.6 shows that we improve the closed-

set accuracy through data augmentation and longer training [126]. The open-set method is the

SoftMax baseline with ResNet50 backbone, and the OOD dataset is TinyImageNet. For OSR,

we can see that AUROC of InC/OOD is significantly better than OSR, which indicates the

uncertainty distribution of InW samples are contradictory with the expectation of OSR. So less

InW samples and better InC/OOD performance are two reasons for better OSR performance

when closed-set accuracy is higher. For UOSR, both the InC/InW and InC/OOD performance

are improving with the growth of closed-set accuracy, which brings better UOSR performance.
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Table 5.7: UOSR and MC performance under different temperatures 𝑇 .

w/o pre-training w/ pre-training

ECE↓AURC↓ AUROC↑ ECE↓AURC↓ AUROC↑

T MC UOSR UOSR OSR InC/InWInC/OOD MC UOSR UOSR OSR InC/InWInC/OOD

0.1 0.247 355.69 66.58 62.06 66.96 66.48 0.128 257.20 69.07 66.67 68.49 69.15
0.5 0.207 351.39 84.10 74.87 85.01 83.86 0.106 257.26 88.66 83.71 88.61 88.67
1 0.146 358.31 85.57 76.90 85.18 85.67 0.081 260.14 90.51 85.93 89.58 90.64
2 0.119 352.60 86.79 79.19 84.62 87.35 0.018 250.99 92.40 89.09 89.08 92.85
5 0.344 351.45 87.05 79.94 84.05 87.84 0.523 249.00 92.96 90.86 86.00 93.90
10 0.256 351.39 87.08 80.04 83.94 87.90 0.509 249.55 92.93 91.02 85.22 93.97
20 0.197 351.38 87.09 80.08 83.89 87.92 0.414 249.73 92.92 91.07 84.99 93.99

(a) T=0.1 (f) T=10(e) T=5(c) T=1(b) T=0.5 (d) T=2

Figure 5.9: Uncertainty distribution under different temperatures 𝑇 without pre-training.

Temperature scaling for UOSR. Temperature scaling is a convenient and effective method for

model calibration [143]. We study how this method influences the UOSR performance. The

experiments are conducted under R50 backbone while ID and OOD datasets are CIFAR100 and

TinyImageNet, respectively. The quantitative results are in Tab. 5.7. The uncertainty distribu-

tion under different temperatures 𝑇 are in Fig. 5.9 and Fig. 5.10.

From Tab. 5.7 we can see that the optimal 𝑇 for MC (𝑇 = 2) is not the best case for UOSR.
When 𝑇 grows, the InC/OOD discrimination increases, but the InC/InW discrimination drops.

Therefore, the OSR performance keeps improving with larger 𝑇 , but the UOSR may not benefit

from larger 𝑇 because of lower InC/InW discrimination. For example, the best 𝑇 for UOSR

with pre-training is 5 rather than 20. But in general, temperature scaling is a simple and use-

ful technique for both MC and UOSR, as 𝑇 = 2 has better MC and UOSR performance than

𝑇 = 1 (without temperature scaling). The only drawback of temperature scaling is it needs the
validation set to determine the optimal 𝑇 .
UOSR benchmark under traditional OSR setting. We evaluate the UOSR and OSR perfor-

mance under the traditional OSR dataset setting [126], where a part of data within one dataset
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(a) T=0.1 (f) T=10(e) T=5(c) T=1(b) T=0.5 (d) T=2

Figure 5.10: Uncertainty distribution under different temperature 𝑇 with pre-training.

is regarded as ID and the remaining data is regarded as OOD. The experiments are conducted

under the most challenging TinyImageNet dataset and the results are in Tab. 5.8. We can see that

the UOSR performance is still higher than OSR performance for most methods, which means

InW samples share more similar uncertainty distribution with InC samples than OOD samples.

Surprisingly, we find the InW/OOD AUROC of ODIN method achieves 84.32, which means

InW and OOD samples can be well distinguishable. This proves our claim that the features of

InC/InW/OOD samples are separable and it is possible to find a proper uncertainty estimation

method to distinguish these three groups of data.

UOSR benchmark under SSB datasets. [126] proposed the Semantic Shift Benchmark (SSB)

which compose several fine-grained datasets, including CUB, Standford Cars, FGCV-Aircraft,

and a part of ImageNet. OSR in SSB is more challenging as OOD samples share the same coarse

labels with ID samples, and only have some minor differences in the fine-grained properties.

We evaluate the UOSR performance on CUB and FGCV-Aircraft and provide the results of

EASY and HARD modes. Pre-training weights are used for better performance. From Tab. 5.9

and Tab. 5.10 we can see the UOSR and OSR performance are higher under the EASY mode

compared to HARDmode as expected, since the OOD samples are more similar with ID samples

in the HARD mode. Our conclusion that InW samples share similar uncertainty with OOD

samples still holds, as the AUROC of InW/OOD is close to 50 and much lower than InC/OOD

and InC/InW.

5.4 Pre-training and Outlier Exposure

After directly applying existing OSR methods for UOSR in Sec. 5.3, we explore two additional

training settings in this section, including pre-training [131] and outlier exposure [45], which

are effective methods to improve the OSR performance because of introduced extra information

beyond the training set. Pre-training is to use large-scale pre-trained weights for initialization
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Table 5.8: Unified open-set recognition benchmark in the image domain under the traditional
OSR dataset setting. All methods are conducted under the R50model. Dataset is TinyImageNet.
†, ‡,♢ refer to OSR-based, SP-based, UOSR-based methods. Pre-training weights are used.

UOSR OSR InC/InW InC/OOD InW/OOD

Methods Acc.↑ AURC↓ AUROC↑ AUROC↑ AUROC↑ AUROC↑ AUROC↑

SoftMax† 87.40 730.10 94.06 90.59 91.02 94.11 66.21
ODIN† 87.40 724.90 96.62 95.21 85.50 96.78 84.32
LC† 87.40 756.49 88.02 84.32 81.27 88.11 58.05
OpenMax† 86.60 731.73 94.49 90.25 91.77 94.53 62.59
OLTR† 87.60 731.93 93.69 90.09 89.96 93.74 64.34
PROSER† 86.90 750.26 92.29 90.21 77.01 92.51 74.91

BCE‡ 87.60 732.79 93.74 90.46 89.63 93.80 66.92
TCP‡ 87.70 731.66 94.20 90.54 90.20 94.25 64.06
DOCTOR‡ 87.40 731.69 93.97 90.54 90.25 94.02 66.40

SIRC(MSP, ‖𝑧‖1)♢ 87.40 731.48 94.02 90.53 91.04 94.06 66.06
SIRC(MSP, Res.)♢ 87.40 729.96 94.77 91.71 91.19 94.82 70.13
SIRC(−ℋ, ‖𝑧‖1)♢ 87.40 730.12 94.74 91.65 91.24 94.79 69.89
SIRC(−ℋ, Res.)♢ 87.40 731.34 94.06 90.59 91.02 94.10 66.22

for better down-task performance. Outlier exposure is to introduce some unlabeled outlier data

(OD) during training and regard these outlier data as the proxy as OOD data to improve the open-

set performance. We find both of them also have a positive effect on UOSR, but for different

reasons.

Pre-training settings. In the image domain, we use BiT pre-trainingweights [155] for ResNet50

and ImageNet [128] pre-training weights for VGG13. In the video domain, Kinetics400 [104]

pre-trained weights are used for initialization.

Outlier exposure settings. In the image domain, we use 300K Random Images dataset from

[45] as outlier dataset for those outlier exposure methods. The 300KRandom Images dataset is a

debiased dataset with real images scraped from online. According to [45], all images that belong

to CIFAR classes and images with divisive metadata have been removed. In the video domain,

we use Kinetics400 as our outlier datasets for those outlier exposure methods. To ensure that the

classes of outlier data is not overlapping with ID data and OOD data, we remove corresponding

classes in Kinetics400. The overlapping classes between Kinetics400 and UCF101/HMDB51

are too many to be listed here (129 overlapping classes). The available training sample ID list

of Kinetics400 and all codes will be public. We pick up 271 classes from Kinetics400 and 25
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Table 5.9: Unified open-set recognition benchmark of CUB-200-2011 dataset. All methods are
conducted under the R50 model. †, ‡,♢ refer to OSR-based, SP-based, UOSR-based methods.
Pre-training weights are used. EASY/HARD

UOSR OSR InC/InW InC/OOD InW/OOD

Methods Acc.↑ AURC↓ AUROC↑ AUROC↑ AUROC↑ AUROC↑ AUROC↑

SoftMax† 91.78 77.69/120.46 92.79/84.31 90.33/78.78 90.56 93.37/82.81 56.34/33.73
ODIN† 91.61 86.89/157.09 91.20/77.37 91.45/73.11 82.42 93.52/76.14 68.90/40.09
LC† 91.61 78.34/121.66 92.66/84.35 89.86/78.63 91.15 93.06/82.69 54.95/34.38
OpenMax† 91.30 78.07/119.61 92.87/85.43 90.01/79.78 91.14 93.35/83.98 54.99/35.67
OLTR† 91.33 80.38/118.50 92.43/85.30 89.42/79.72 90.66 92.91/83.95 52.65/35.19
PROSER† 91.33 79.39/128.14 92.50/83.81 90.32/78.53 89.31 93.37/82.42 58.21/37.60

BCE‡ 91.50 79.75/122.19 92.24/84.76 89.34/79.27 90.64 92.67/83.31 53.43/35.80
TCP‡ 92.06 77.31/116.93 92.55/84.85 90.28/79.92 90.07 93.17/83.64 56.71/36.78
DOCTOR‡ 91.61 78.09/121.61 92.76/84.37 90.09/78.68 91.13 93.18/82.71 56.26/34.70

SIRC(MSP, ‖𝑧‖1)♢ 91.78 78.04/119.42 92.72/84.46 90.19/78.95 90.59 93.27/83.00 55.78/33.70
SIRC(MSP, Res.)♢ 91.78 77.69/120.46 92.79/84.31 90.33/78.78 90.56 93.37/82.81 56.33/33.74
SIRC(−ℋ, ‖𝑧‖1)♢ 91.78 76.97/119.40 93.11/84.52 91.06/83.08 90.52 93.78/83.08 60.65/34.78
SIRC(−ℋ, Res.)♢ 91.78 76.65/120.65 93.18/84.33 91.19/78.91 90.47 93.88/82.86 61.20/34.81

samples in each class as outlier data. We implement several outlier exposure based methods,

including OE [45], EB [133], VOS [162] and MCD [132].

Implementation details. In the image domain, when we train the model from scratch, we find

that setting the base learning rate as 0.1 and step-wisely decayed by 10 every 24000 steps with

totally 120000 steps can achieve good enough closed-set performance. We use a linear warmup

strategy to warmup the training in the first 500 steps. We use SGD with momentum, batch size

128 for all models. When we fine tune the model with ImageNet pretrained model from [155],

we set the base learning rate as 0.003 and step-wisely decayed every 3000 steps with totally

10000 steps. We use a linear warmup strategy to warmup the training in the first 500 steps.

We use SGD with momentum, batch size 512 for all models. For outlier exposure methods,

the batch size of outlier data is set to 128. In the video domain, when we train the model from

scratch, we find that setting the base learning rate as 0.05 and step-wisely decayed every 160

epochs with totally 400 epochs can achieve good enough closed-set performance. The batch

size is 256 for all methods. We follow [77] to set the base learning rate as 0.001 and step-wisely

decayed every 20 epochs with totally 50 epochs. For those methods without outlier exposure,

we fix the parameters of all Batch Normalization layers except the first one, and set the learning
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Table 5.10: Unified open-set recognition benchmark of Fine-Grained Visual Classification of
Aircraft (FGVC-Aircraft) dataset. All methods are conducted under the R50 model. †, ‡,♢ refer
to OSR-based, SP-based, UOSR-based methods. Pre-training weights are used. EASY/HARD

UOSR OSR InC/InW InC/OOD InW/OOD

Methods Acc.↑ AURC↓ AUROC↑ AUROC↑ AUROC↑ AUROC↑ AUROC↑

SoftMax† 85.61 129.71/127.18 89.46/82.46 84.24/72.85 88.54 89.80/79.08 51.18/35.75
ODIN† 85.25 152.17/173.15 87.11/75.75 84.92/68.36 80.04 89.72/73.32 57.17/39.70
LC† 85.25 134.44/144.29 88.98/80.15 83.55/69.74 87.58 89.50/75.93 49.13/33.95
OpenMax† 86.69 123.31/123.86 90.13/82.10 85.63/73.20 88.12 90.80/79.01 51.99/35.36
OLTR† 85.97 128.01/124.92 89.86/82.79 85.11/73.45 88.57 90.31/79.66 53.26/35.35
PROSER† 85.97 124.15/137.70 90.73/80.40 86.92/70.44 87.31 91.93/76.67 56.24/32.22

BCE‡ 85.37 134.56/127.05 88.75/82.37 84.05/73.93 86.49 89.58/80.06 51.75/38.17
TCP‡ 85.25 132.09/131.80 89.30/82.19 83.60/72.12 88.41 89.63/78.66 48.73/34.30
DOCTOR‡ 85.25 133.93/144.07 89.16/80.24 83.79/69.80 87.68 89.71/76.00 49.58/33.96

SIRC(MSP, ‖𝑧‖1)♢ 85.61 130.50/126.36 89.24/82.57 83.86/73.04 88.52 89.49/79.27 50.31/35.98
SIRC(MSP, Res.)♢ 85.61 129.71/127.18 89.46/82.46 84.24/72.85 88.54 89.80/79.08 51.17/35.76
SIRC(−ℋ, ‖𝑧‖1)♢ 85.61 128.97/125.59 89.71/82.85 84.70/73.60 88.55 90.13/79.70 52.40/37.35
SIRC(−ℋ, Res.)♢ 85.61 128.04/126.58 89.97/82.69 85.16/73.35 88.52 90.49/79.46 53.46/37.01

rate of the fully connected layer to be 10 times of the base learning rate. For those methods with

outlier exposure, all parameters are updated with the same learning rate.

UOSR benchmark settings. We include OSR-based, SP-based, and UOSR-based methods

to build a comprehensive UOSR benchmark. We implement several Selective Prediction (SP)

based methods, including BCE, TCP [135], CRL [136], and DOCTOR [137]. Although these

SP methods are originally designed to differentiate InC and InW samples, we adopt them in the

UOSR setting to build a more comprehensive benchmark. The only UOSR-based method is

SIRC [134], which combines two uncertainty scores for better UOSR performance. The evalu-

ation metrics are AURC and AUROC [130].

Results. The UOSR benchmarks for image and video domains are Tab. 5.11, Tab. 5.12, and

Tab. 5.13 respectively. First, we can see the AUROC of UOSR is higher than OSR for al-

most all the methods under both settings, i.e., pre-training and outlier exposure, which further

strengthens the conclusion that the uncertainty distribution of OSR methods is closer to the

ground truth of UOSR. For instance, AUROC is 89.59 for UOSR and 83.93 for OSR under the

Ensemble method w/o pre-training in Tab. 5.11. Second, pre-training and outlier exposure can

effectively boost the UOSR and OSR performance , e.g., the pre-training boost the AUROC
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Table 5.11: UOSR benchmark in the image domain under the ResNet50 model. ID dataset
is CIFAR100 while the OOD dataset is TinyImageNet. †, ‡,♢ refer to OSR-based, SP-based,
UOSR-based methods. OD: Outlier Data. N/G/R means No/Generated/Real OD. AUROC (%),
AURC (×103) and Acc. (%) are reported.

w/o pre-training w/ pre-training
UOSR OSR UOSR OSR

Methods OD Acc.↑ AURC↓ AUROC↑ AUROC↑ Acc.↑ AURC↓ AUROC↑ AUROC↑
ODIN† N 72.08 371.92 86.69 81.65 86.48 261.42 91.81 91.47
LC† N 72.08 372.55 84.16 76.37 86.48 280.69 87.68 85.16
OpenMax† N 73.64 361.22 85.33 76.23 86.43 261.53 90.29 85.86
MaxLogits† N 73.89 351.39 87.09 80.11 86.42 249.86 92.91 91.11
Entropy† N 73.89 355.54 86.25 78.14 86.43 257.36 91.21 87.22
OLTR† N 73.69 357.79 85.94 77.10 86.22 260.17 90.59 86.05
Ensemble† N 76.78 314.56 89.59 83.93 87.41 240.34 93.67 92.02
Vim† N 73.89 341.88 87.37 80.92 86.43 246.59 93.01 92.33
BCE‡ N 73.29 369.91 84.29 74.59 86.39 257.74 90.79 86.50
TCP‡ N 71.80 369.17 85.17 75.46 86.83 261.97 89.95 85.67
DOCTOR‡ N 72.08 378.45 84.48 75.06 86.48 262.05 90.24 85.75

SIRC(MSP, ‖𝑧‖1)♢ N 73.13 358.93 85.77 76.67 86.44 260.08 90.53 85.98
SIRC(MSP, Res.)♢ N 73.13 348.40 87.26 80.29 86.44 247.75 92.99 90.39
SIRC(−ℋ, ‖𝑧‖1)♢ N 73.13 355.62 86.57 78.16 86.44 257.28 91.23 87.27
SIRC(−ℋ, Res.)♢ N 73.13 346.21 87.71 81.43 86.44 244.55 93.68 91.62

SoftMax† N 73.28 363.55 84.90 75.59 86.44 260.14 90.50 85.93
SoftMax†(OE†) R 73.54 339.59 88.78 84.35 85.43 255.77 92.54 90.65

ARPL† N 73.03 345.84 88.13 80.49 84.67 301.27 87.01 83.49
ARPL+CS† R 72.78 349.50 87.65 82.81 83.60 268.00 92.00 91.17
MCD†(Dropout†) N 76.49 375.01 82.25 79.21 87.21 301.71 83.57 81.69
MCD† R 70.88 365.82 86.97 79.88 81.96 287.21 90.43 86.59
PROSER† G 68.08 394.48 84.82 79.23 81.32 301.78 90.20 89.29
PROSER†(EB†) R 71.82 366.65 86.06 81.95 85.06 269.79 90.84 90.38

VOS † G 73.44 356.68 86.65 79.72 86.62 249.24 92.94 91.37
VOS † R 73.18 331.12 89.96 85.78 85.93 251.44 92.92 91.34
OpenGAN † R 73.61 334.04 88.92 85.48 86.25 260.19 91.21 90.94

of UOSR/OSR from 84.90/75.59 to 90.50/85.93 for the SoftMax, and outlier exposure method

OE has 90.19/86.29 AUROC of UOSR/OSR compared to 84.90/75.59 of SoftMax in Tab. 5.11.

Note that to ensure outlier data is useful, we keep methods w/ and w/o outlier data as similar

as possible, like SoftMax/OE, ARPL/ARPL+CS, and Dropout/MCD. Third, real outlier data is

more beneficial than generated outlier data in the UOSR and OSR tasks. The UOSR/OSR AU-

ROC of VOS method is 89.96/85.78 for real outlier data and 86.65/79.72 for generated outlier

data, provided in Tab. 5.11.

Analysis. To better understand why pre-training and outlier exposure are helpful for UOSR and

OSR, we provide the InC/InW and InC/OOD discrimination performance of each method in

Fig. 5.11. We can see that almost all outlier exposure methods are in the Q2, which means that
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Table 5.12: UOSR benchmark in the video domain under the TSMmodel. ID dataset is UCF101
while the OOD dataset is HMDB51. †, ‡,♢ refer to OSR-based, SP-based, UOSR-based meth-
ods. OD: Outlier Data. AUROC (%), AURC (×103) and Acc. (%) are reported.

w/o pre-training w/ pre-training

UOSR OSR UOSR OSR

Methods OD Acc.↑ AURC↓ AUROC↑ AUROC↑ Acc.↑ AURC↓ AUROC↑ AUROC↑
OpenMax† N 73.92 185.81 85.95 82.27 95.32 75.75 91.22 90.89
BNN SVI† N 71.51 181.45 89.44 80.10 94.71 69.89 93.58 91.81
RPL† N 71.46 186.18 88.70 79.67 95.59 72.88 92.44 90.53
DEAR† N 71.33 215.80 87.56 80.00 94.41 102.01 91.50 91.49

BCE‡ N 69.90 223.57 83.27 78.96 93.66 110.42 83.83 81.64
CRL‡ N 71.80 183.76 88.75 78.57 95.22 67.61 93.36 91.38
DOCTOR‡ N 72.01 182.04 88.73 79.76 95.06 65.61 93.89 91.80

SIRC(MSP, ‖𝑧‖1)♢ N 73.59 173.32 88.71 80.33 95.00 65.97 93.74 91.42
SIRC(MSP, Res.)♢ N 73.59 174.76 88.17 78.74 95.00 65.43 93.83 91.73
SIRC(−ℋ, ‖𝑧‖1)♢ N 73.59 172.30 89.27 81.61 95.00 66.11 94.06 91.95
SIRC(−ℋ, Res.)♢ N 73.59 175.79 88.50 79.62 95.00 69.06 94.07 92.18

SoftMax† N 73.92 173.14 88.42 79.72 95.03 68.08 93.94 91.75
SoftMax†(OE†) R 74.42 162.36 90.19 86.29 94.71 67.93 94.33 93.40

MCD†(Dropout†) N 73.63 184.66 85.58 75.75 95.06 79.53 90.30 88.23
MCD† R 72.49 168.83 91.26 85.57 93.47 71.19 95.34 93.68

VOS† G 74.00 187.82 86.10 84.51 95.27 65.68 94.44 93.62
VOS† R 74.68 172.71 87.98 87.09 94.79 64.99 94.97 93.72

EB† R 70.90 212.01 85.32 86.47 94.66 67.83 94.40 93.06

outlier exposure methods have lower InC/InW AUROC and higher InC/OOD AUROC than the

SoftMax baseline. For OSR, both lower InC/InW and higher InC/OOD AUROC are beneficial,

but only higher InC/OOD AUROC is wanted for UOSR, while lower InC/InW AUROC is not.

This can explain why some of the UOSR performances with outlier exposure are comparable

or even worse than the baseline, such as EB and VOS in the video domain Tab. 5.12, but all

of the OSR performances are increased. In contrast, pre-training is helpful for both InC/InW

and InC/OOD AUROC, as methods with pre-training are in the Q1. Outlier exposure methods

also benefit from pre-training, as green marks are at the upper right location compared to orange

marks. Therefore, outlier exposure and pre-training bring the UOSR performance gain for dif-

ferent reasons. InC/OOD performance is improved by both of the techniques, but pre-training

is also helpful for InC/InW, while outlier exposure is not. This can be explained by the fact

that the model may see additional ID samples during pre-training so that the closed-set accuracy

and InC/InW discrimination are improved. In contrast, outlier exposure only provides OOD
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Table 5.13: Unified open-set recognition benchmark in the image domain. All methods are con-
ducted under the VGG13 model. ID dataset is CIFAR100 while OOD dataset is TinyImageNet.
†, ‡,♢ refer to OSR-based, SP-based, UOSR-based methods. OD: use Outlier Data in training.

w/o pre-training w/ pre-training

UOSR OSR UOSR OSR

Methods OD Acc.↑ AURC↓ AUROC↑ AUROC↑ Acc.↑ AURC↓ AUROC↑ AUROC↑

SoftMax† % 75.07 341.06 85.87 76.44 74.69 311.70 91.01 85.13
ODIN† % 75.07 346.70 85.27 78.13 74.69 314.80 91.24 88.90
LC† % 75.07 365.96 81.77 76.68 74.69 339.96 88.27 88.95
OpenMax† % 74.52 368.58 82.81 72.68 75.05 312.70 90.47 84.25
OLTR† % 73.80 365.61 84.68 74.37 74.52 306.73 92.12 87.08
PROSER† % 70.95 376.63 84.00 79.29 71.11 367.16 86.45 85.97

BCE‡ % 74.74 339.25 86.54 76.99 74.45 325.29 88.85 81.14
TCP‡ % 75.09 340.41 85.94 76.18 74.83 313.80 90.57 84.35
DOCTOR‡ % 75.07 340.69 85.95 76.72 74.69 310.29 91.37 85.97

SIRC(MSP, ‖𝑧‖1)♢ % 75.07 343.44 85.33 75.63 74.69 313.22 90.67 84.59
SIRC(MSP, Res.)♢ % 75.07 336.87 86.77 78.23 74.69 309.67 91.46 86.14
SIRC(−ℋ, ‖𝑧‖1)♢ % 75.07 343.53 85.25 76.37 74.69 309.19 91.56 86.82
SIRC(−ℋ, Res.)♢ % 75.07 335.71 86.93 79.13 74.69 305.34 92.39 88.34

OE ! 71.71 312.44 93.71 89.76 73.38 306.72 93.34 92.77
EB ! 74.19 340.66 87.67 85.73 72.76 340.81 89.40 89.79
VOS ! 71.73 312.75 93.68 90.76 73.08 306.37 93.65 92.97
MCD ! 70.45 316.57 94.21 91.54 72.08 300.87 95.40 94.26

data but no more ID data, so only InC/OOD performance is improved. Tab. 5.14 is the comple-

mentary analysis of Tab. 5.11, which further illustrates that outlier data can improve InC/OOD

discrimination but may not be helpful for InC/InW discrimination.

UOSR under Noisy Outlier Exposure. When we introduce outlier data into the training pro-

cess, the labels of some outlier data may be corrupted and become the labels of ID class. We

call this kind of outlier data as noisy outlier data. We study how noisy outlier data influence the

UOSR and OSR performance in this section. In addition, we use NGC [163] to find the noisy

outlier data and correct them. The results are shown in Tab. 5.15. We can see that the closed-set

Acc. gradually decreases with the growth of noise level when NGC is not used. This is natural

as some noisy outlier data corrupt the ID data distribution. In contrast, the closed-set Acc. does

not drop with the growth of noise level when NGC is used. So NGC is very effective in finding
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Figure 5.11: (a) and (b) plot the InC/InW and InC/OOD discrimination in the image and video
domain. We set the SoftMax method training from scratch as the original point and divide the
coordinate system into 4 quadrants (Q1 to Q4). (TS: Train from Scratch. TP: Train from Pre-
training. OE: Outlier Exposure.)

corrupted samples. When the noise level is 0%, the UOSR performance with NGC is better than

the performance without NGC (lower AURC value), meaning that other parts in NGC that are

not related to label corruption, such as contrastive learning, are helpful for UOSR. Surprisingly,

the performance of UOSR and OSR are relatively stable under different noise levels no matter

we use NGC or not, compared to the clear performance drop of closed-set Acc. when NGC

is not used. So the model is robust in open-set related performance when noisy outlier data is

introduced. Our finding that ID samples share similar uncertainty scores with OOD samples

still holds as AUROC of InW/OOD is close to 50.

5.5 Few-shot Unified Open-set Recognition

In addition to the analysis of two useful training settings in Sec. 5.4, we introduce a new evalu-

ation setting into UOSR in this section. Inspired by the recent work SSD [118] which proposes

the few-shot OSR, we introduce the few-shot UOSR, where 1 or 5 samples per OOD class can

be introduced for reference to better distinguish OOD samples. The introduced reference OOD

datasets are marked as 𝒟𝑟𝑒𝑓
𝑡𝑒𝑠𝑡 = {(𝐱𝑖, 𝑦𝑖)}𝑁′

𝑖=1 ⊂ 𝒳 × 𝒰. We show that few-shot UOSR has dis-

tinct challenges from few-shot OSR because of InW samples, and we propose our FS-KNNS

method to achieves the state-of-the-art UOSR performance even without outlier exposure during

training.

Baselines and dataset settings. SSD is the only existing few-shot OSR method that utilizes

the Mahalanobis distance with ID training samples 𝒟𝑡𝑟𝑎𝑖𝑛 and OOD reference samples 𝒟𝑟𝑒𝑓
𝑡𝑒𝑠𝑡.
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Table 5.14: Uncertainty distribution analysis in image domain with ResNet50. Pre-training is
not used. OOD dataset: TinyImageNet. AUROC (%) is reported.

Methods OD InC/OOD InC/InW InW/OOD OSR UOSR

ODIN N 88.35 80.76 64.36 81.65 86.69
LC N 84.60 82.58 55.14 76.37 84.16
OpenMax N 85.16 85.96 51.27 76.23 85.33
OLTR N 85.99 85.74 52.22 77.10 85.94

SoftMax N 84.69 85.68 50.64 75.59 84.90
SoftMax(OE) R 90.04 84.00 68.54 84.35 88.78

ARPL N 88.76 85.77 58.09 80.49 88.13
ARPL+CS R 89.36 81.40 65.32 82.81 87.65

MCD(Dropout) N 84.15 74.17 63.15 79.21 82.25
MCD R 87.47 85.23 61.39 79.88 86.97

PROSER G 87.04 77.84 62.57 79.23 84.82
PROSER (EB) R 88.36 77.88 65.60 81.95 86.06

VOS G 87.51 83.38 58.17 79.72 86.65
VOS R 91.44 84.41 70.32 85.78 89.96

KNN [31] utilizes the feature distance with samples in 𝒟𝑡𝑟𝑎𝑖𝑛 as uncertainty scores and shows

it is better than Mahalanobis distance. So we slightly modify KNN to adapt to the few-shot

UOSR and find the modified FS-KNN can already beat SSD. 𝒟𝑟𝑒𝑓
𝑡𝑒𝑠𝑡 comes from the validation

set of TinyImageNet and training set of UCF101 in the image and video domain. We repeat the

evaluation process until all OOD reference samples are used and calculate the mean as the final

few-shot result.

FS-KNN. Given a test sample 𝐱∗ and a feature extractor 𝑓 , the feature of 𝐱∗ is 𝐳∗ = 𝑓(𝐱∗).
The cosine similarity set between 𝐳∗ and the feature set of 𝒟𝑡𝑟𝑎𝑖𝑛 is 𝒮𝑡𝑟𝑎𝑖𝑛 = {𝑑𝑖}𝑁

𝑖=1, 𝑑𝑖 =
(𝐳∗ ⋅ 𝐳𝑖)/(‖𝐳∗‖ ⋅ ‖𝐳𝑖‖), 𝐳𝑖 = 𝑓(𝐱𝑖), 𝐱𝑖 ∈ 𝒟𝑡𝑟𝑎𝑖𝑛. 𝒮𝑟𝑒𝑓

𝑡𝑒𝑠𝑡 is similar with 𝒮𝑡𝑟𝑎𝑖𝑛 except 𝐱𝑖 comes from

𝒟𝑟𝑒𝑓
𝑡𝑒𝑠𝑡. We believe the uncertainty should be higher if the test sample is more similar to reference

OOD samples and not similar with ID samples. Therefore, the uncertainty score is

̂𝑢𝑓𝑠−𝑘𝑛𝑛 = 1 − 𝑡𝑜𝑝𝐾(𝑆𝑡𝑟𝑎𝑖𝑛) + 𝑡𝑜𝑝𝐾(𝑆𝑟𝑒𝑓
𝑡𝑒𝑠𝑡 ), (5.4)

where 𝑡𝑜𝑝𝐾 means the 𝐾 𝑡ℎ largest value. The performances of SoftMax, KNN, FS-KNN, and

SSD are in Tab. 5.16 and Tab. 5.18. Pre-training is used for better performance. FS-KNN has

better InC/OOD performance than KNN as reference OOD samples are introduced. Although

the overall UOSR performance of FS-KNN is better than the SoftMax baseline, the InC/InW per-
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Table 5.15: UOSR and OSR performance under noisy outlier data. ID dataset is CIFAR100
and outlier dataset is 300K Random Images. OOD dataset is TinyImageNet. Experiments are
conducted with ResNet18 backbone.

UOSR OSR InC/InW InC/OOD InW/OOD

Noise level NGC Acc.↑ AURC↓ AUROC↑ AUROC↑ AUROC↑ AUROC↑ AUROC↑

0% % 76.19 334.13 85.50 77.29 85.05 85.60 50.70
20% % 72.15 343.46 87.84 77.53 87.34 87.98 50.45
40% % 70.06 343.60 89.91 79.86 88.36 90.37 55.25
60% % 69.46 346.62 90.07 79.79 88.76 90.47 55.52
80% % 69.20 348.18 89.95 79.05 88.84 90.29 53.77
100% % 68.05 356.35 89.97 78.31 89.63 90.08 53.23

0% ! 77.52 315.32 87.75 81.12 85.61 88.23 56.61
20% ! 77.50 316.86 87.81 80.46 86.88 88.02 54.40
40% ! 76.87 321.66 87.58 79.48 87.15 87.68 52.23
60% ! 77.07 319.58 87.91 79.88 87.43 88.02 52.53
80% ! 77.12 317.90 88.17 80.14 87.41 88.34 52.49
100% ! 77.38 328.85 86.24 78.00 86.46 86.20 49.94

formance is significantly sacrificed, which is also an important aspect of UOSR. For example,

InC/InW performance drops from 89.58 to 79.58 in the 5-shot results of Tab. 5.16. So we natu-

rally ask a question: Can we improve the InC/OOD performance based on the introduced OOD

reference samples while keeping similar InC/InW performance with SoftMax baseline? This is

the key difference between few-shot OSR and few-shot UOSR, as low InC/InW performance is

wanted in OSR but not preferred in UOSR.

FS-KNNS. Inspired by SIRC [134], we aim to find a way to fuse SoftMax and FS-KNN scores

so that the mixed score can keep the high InC/OOD performance of FS-KNN andmeanwhile has

the comparable InC/InW performance with SoftMax. The uncertainty distributions of SoftMax

and FS-KNNS are depicted in Fig. 5.12. We find that OOD samples have larger uncertainty than

InW and InC samples in the FS-KNN method, but the uncertainty of InC samples overlaps a lot

with InW samples, which explains the reason that InC/OOD performance is high but InC/InW

performance is low. In contrast, InW and OOD samples share similar uncertainty in the SoftMax

method, which brings higher InC/InW performance. Therefore, we want to keep the uncertainty

of InW samples in the SoftMax method, as well as the uncertainty of OOD samples in the

FS-KNN method. In this way, the mixed scores obtain the high InC/OOD performance from

FS-KNN while keeping the comparable InC/InW performance of SoftMax. We call this method
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Table 5.16: Results of few-shot UOSR in the image domain. Model is ResNet50 with pre-
training. ID and OOD datasets are CIFAR100 and TinyImageNet. AUROC (%) and AURC
(×103) are reported.

5-shot 1-shot

AURC↓ AUROC↑ AURC↓ AUROC↑

Methods UOSR UOSR OSR InC/OOD InC/InW UOSR UOSR OSR InC/OOD InC/InW

SoftMax 260.14 90.51 85.93 90.64 89.58 260.14 90.51 85.93 90.64 89.58
KNN 245.48 93.45 92.34 94.86 83.08 245.48 93.45 92.34 94.86 83.08

FS-KNN 238.54 95.09 95.91 97.20 79.58 239.71 94.67 94.91 96.52 81.04
SSD 246.42 94.95 97.89 98.32 70.14 245.99 94.16 96.51 97.16 72.09

FS-KNN+S 239.49 94.14 91.64 95.27 85.85 240.30 93.97 91.36 94.99 86.45
FS-KNN*S 255.82 91.26 87.10 91.47 89.67 255.69 91.30 87.16 91.51 89.69
SIRC 241.58 93.85 91.42 94.44 89.58 239.64 94.20 92.03 94.87 89.26

FS-KNNS 231.61 95.51 94.16 96.54 87.98 234.84 94.91 93.10 95.84 88.08

(a) Joint uncertainty distribution (b) SoftMax uncertainty distribution (c) FS-KNN uncertainty distribution (d) FS-KNNS uncertainty distribution

InC
InW
OoD

𝜆!""#

𝜆!""#

Figure 5.12: Uncertainty scores of each test sample (a) and uncertainty distribution of SoftMax
(b), FS-KNN (c), and FS-KNNS (d).

FS-KNN with SoftMax (FS-KNNS), and the uncertainty is

̂𝑢𝑓𝑠−𝑘𝑛𝑛𝑠 = 𝑢0 + 1
1 + 𝑒−𝛼(𝑢1−𝜆𝑘𝑛𝑛𝑠) 𝑢1, (5.5)

where 𝑢0 and 𝑢1 refer to the uncertainty score of SoftMax and FS-KNN, respectively. 𝜆𝑘𝑛𝑛𝑠 is a

threshold to determine when the weight of 𝑢1 becomes large, and 𝛼 is a coefficient to control the

change rate of the weight. ̂𝑢𝑓𝑠−𝑘𝑛𝑛𝑠 will be largely influenced by 𝑢1 when 𝑢1 > 𝜆𝑘𝑛𝑛𝑠. A proper

𝜆𝑘𝑛𝑛𝑠 should be located between the InW and OOD samples, as shown in Fig. 5.12 (a) and (c).

In this way, the uncertainty of InW samples is mainly controlled by SoftMax, and OOD samples

are strengthened by FS-KNN.

Results. The uncertainty distribution of FS-KNNS is shown in Fig. 5.12 (d), which shows the

uncertainty of InC and InW samples are similar to SoftMax (b), but the uncertainty of OOD
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Table 5.17: Results of few-shot UOSR in the image domain. Model is VGG13with pre-training.
ID and OOD datasets are CIFAR100 and TinyImageNet respectively.

5-shot 1-shot

AURC↓ AUROC↑ AURC↓ AUROC↑

Methods UOSR UOSR OSR InC/OOD InC/InW UOSR UOSR OSR InC/OOD InC/InW

SoftMax 311.68 91.00 85.13 92.10 86.68 311.68 91.00 85.13 92.10 86.68
KNN 306.04 93.04 91.61 95.75 82.32 306.04 93.04 91.61 95.75 82.32

FS-KNN 295.80 95.44 98.87 99.39 79.83 296.75 95.27 98.48 99.16 79.87
SSD 321.31 92.57 99.26 99.36 65.72 315.46 93.11 99.10 99.27 68.77

FS-KNN+S 296.42 94.22 92.15 96.50 85.20 296.67 94.20 92.15 96.48 85.16
FS-KNN*S 303.01 92.85 89.42 94.38 86.83 302.84 92.88 89.45 94.41 86.83
SIRC 287.91 95.71 96.33 98.00 86.66 288.12 95.68 96.30 98.00 86.53

FS-KNNS 285.85 95.95 96.52 98.30 86.66 287.02 95.75 95.96 98.04 86.67

samples is larger. From Tab. 5.16, Tab. 5.18, and Tab. 5.17, we can see our FS-KNNS has

significantly better InC/InW performance than FS-KNN (87.98 and 79.58 under ResNet50), and

meanwhile keeps the high InC/OOD performance, so the overall UOSR performance is better

than both SoftMax and FS-KNN.We also try three score fusion methods, including FS-KNN+S,

FS-KNN*S, and SIRC, but these methods are general score fusion methods, while our method is

specifically designed for UOSR, so our FS-KNNS surpass them. Our FS-KNNS is totally based

on the existing model trained by the classical cross-entropy loss, so there is no extra effort and

no outlier data during training, and our FS-KNNS still has better performance than all outlier

exposure methods and achieves state-of-the-art UOSR performance, as shown in Fig. 5.1 (b) and

Fig. 5.13. Note that the best choice for OSR (FS-KNN or SSD) may not be the best choice for

UOSR (FS-KNNS), as their expectation of InC/InW is contradictory, which shows the necessity

of our proposed few-shot UOSR.

Analyze of 𝐾 . Similar with [31], we find the value of 𝐾 influences the performance a lot. The

ablation study of 𝐾 is shown in Fig. 5.14. It shows that the best 𝐾 for InC/OOD discrimination

is between 3 and 5, and drops quickly after 7. In contrast, the InC/InW performance keeps

increasing until 20 and then drops. The overall UOSR performance achieves the best when

𝐾 = 5.
Analyze of 𝛼 and 𝜆𝑘𝑛𝑛𝑠. Two hyper parameters of FS-KNNS including 𝛼 and 𝜆𝑘𝑛𝑛𝑠 are signifi-

cant for the performance. 𝜆𝑘𝑛𝑛𝑠 is a threshold to determine when the weight of 𝑢1 becomes large,

i.e., ̂𝑢𝑓𝑠−𝑘𝑛𝑛𝑠 is important when 𝑢1 > 𝜆𝑘𝑛𝑛𝑠. 𝛼 is to control the change rate of the weight. The
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Table 5.18: Results of few-shot UOSR in the video domain. Model is TSM with pre-training.
ID and OOD datasets are UCF101 and HMDB51. AUROC (%) and AURC (×103) are reported.

5-shot 1-shot

AURC↓ AUROC↑ AURC↓ AUROC↑

Methods UOSR UOSR OSR InC/OOD InC/InW UOSR UOSR OSR InC/OOD InC/InW

SoftMax 66.55 93.66 91.44 93.46 94.99 66.55 93.66 91.44 93.46 94.99
KNN 73.73 93.38 92.99 94.11 88.44 73.73 93.38 92.99 94.11 88.44

FS-KNN 68.44 95.04 96.14 96.71 83.74 73.19 93.60 94.32 95.09 83.53
SSD 70.36 93.91 95.41 95.97 79.97 75.61 92.48 93.34 94.07 81.75

FS-KNN+S 65.64 95.44 94.69 96.13 90.78 68.98 94.54 93.66 95.14 90.48
FS-KNN*S 65.29 94.09 92.13 93.96 94.99 65.42 94.04 92.08 93.91 94.97
SIRC 62.41 95.11 93.79 95.13 94.94 63.11 94.88 93.49 94.88 94.84

FS-KNNS 60.00 96.19 95.37 96.40 94.82 62.65 95.35 94.26 95.48 94.49

ideal 𝜆𝑘𝑛𝑛𝑠 should be located between the uncertainty of InW and OOD samples as shown in

Fig. 5.12 (a) and (c), so that the uncertainty of InW samples is still determined by SoftMax and

the uncertainty of OOD samples is enlarged because of FS-KNN. However, which sample is

InW or OOD is unknown during test, so we cannot determine the 𝜆𝑘𝑛𝑛𝑠 based on the uncertainty

distribution of test samples. [134] proposed to determine the hyper parameters of SIRC based

on the training set, but we find that the uncertainty distribution ̂𝑢𝑓𝑠−𝑘𝑛𝑛𝑠 of training samples sig-

nificantly different from the test InC samples, as shown in Fig. 5.15. Therefore, we seek help

from the OOD reference samples, as we find their uncertainty distribution is extremely similar

with OOD test samples. We calculate the mean 𝑢 and standard deviation 𝜎 of the ̂𝑢𝑓𝑠−𝑘𝑛𝑛𝑠 of

OOD reference samples, and we aim to find a proper 𝜆𝑘𝑛𝑛𝑠 through:

𝜆𝑘𝑛𝑛𝑠 = 𝑢 − 𝛽 ⋅ 𝜎 (5.6)

We draw several 𝜆𝑘𝑛𝑛𝑠 with different 𝛽 in Fig. 5.15 (a to e). A smaller 𝜆𝑘𝑛𝑛𝑠 or a larger 𝛽
means more samples will be influenced by the FS-KNN uncertainty, so that the ̂𝑢𝑓𝑠−𝑘𝑛𝑛𝑠 of

more OOD test samples will be strengthened by the FS-KNN uncertainty which brings better

InC/OOD performance, but meanwhile more InW samples will also be influenced by the FS-

KNN uncertainty which brings worse InC/InW performance, as shown in Fig. 5.16. In other

words, 𝜆𝑘𝑛𝑛𝑠 controls the trade-off between InC/OOD and InC/InW performance. Overall, 𝛽 = 1
achieves the best UOSR performance which is a balanced result of InC/OOD and InC/InW
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Figure 5.13: UOSR performance under all settings of TSM backbone in the video domain. OOD
dataset is HMDB51.

trade-off. Larger 𝛼 means the weight of FS-KNN uncertainty grows quickly when FS-KNN

uncertainty is closed to 𝜆𝑘𝑛𝑛𝑠. We find that a smaller 𝛼 makes the performance insensitive of

𝜆𝑘𝑛𝑛𝑠, and vice versa. So finally we pick 𝛼 and 𝛽 as 50 and 1 as the optimal hyper parameters.
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Figure 5.14: Ablation study of 𝐾 used in FS-KNN. The backbone is ResNet50.

a b c d e

Figure 5.15: Uncertainty distribution of ̂𝑢𝑓𝑠−𝑘𝑛𝑛𝑠. InC-train samples have distinct uncertainty
distribution with InC-test samples, but OOD reference samples share similar uncertainty distri-
bution with OOD test samples. a to e correspond to the 𝜆𝑘𝑛𝑛𝑠 when 𝛽 = 1.5, 1, 0.5, 0, −0.5 in
Eq. 5.6.

InC/OoD InC/InW UOSR

𝛼

𝛽

𝛼

𝛽 𝛽

𝛼

Figure 5.16: Ablation study of 𝛽 and 𝛼 in Eq. 5.5 and Eq. 5.6.
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CHAPTER 6

CONCLUSION AND FUTUREWORK

In this chapter, we make a conclusion of the whole thesis and provide several potential di-

rections of future work.

6.1 Conclusion

In Chapter 3, we delve into the task of open-set 3D semantic segmentation. Initially, we de-

fine the open-world recognition problem within LIDAR semantic segmentation. This realm

encompasses open-set segmentation for identifying OOD objects and incremental learning to

gradually learn OOD classes without compromising the knowledge of ID classes. We propose a

redundancy classifier framework tailored for both open-set recognition and incremental learn-

ing tasks. Unknown Object Synthesis, Predictive Distribution Calibration, and Pseudo Label

Generation are designed for OOD detection and preserving the old knowledge.

In Chapter 4, we commence by analyzing the open-set recognition problem through the lens

of the Information Bottleneck theory. We find that the performance in open-set scenarios is

closely tied to the availability of class-specific and instance-specific information. To enhance

these aspects and thereby improve both closed-set and open-set performance, we introduce the

prototypical similarity learning framework. We encourage the features of samples in the same

class to be not exactly same to keep the intro-class variance which helps keep the instance-

specific information. Besides, the shuffled samples are pushed away by the original samples to

learn temporal information which is an important part of class-specific information.

In Chapter 5, we conduct an in-depth analysis of a novel paradigm termed unified open-set

recognition. Unlike traditional open-set recognition, which solely focuses on detecting OOD

samples, unified open-set recognition aims to identify both OOD samples and ID samples that

are misclassified. This is due to the incorrect prediction results for these samples. We dis-

cover that OOD samples and misclassified ID samples share similar uncertainty distributions.

Additionally, we investigate the impact of outlier exposure and pre-training in the unified open-

set recognition setting. Finally, we propose a method FS-KNNS under the few-shot learning

paradigm that fully leverages the provided OOD templates during inference.
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6.2 Future Work

Open-set recognition in pure computer vision modality reaches saturated performance. One

future work can be the exploration of open-set recognition in the multi-modality models like

CLIP [164]. The introducing of language branch brings more opportunities for such multi-

modality open-set recognition problem. The CLIP model has strong zero-shot performance

which makes the definition of open-set recognition problem might be changed in such context,

since it is hard to define what is OOD for the CLIP model. Another future direction is the hal-

lucination problem of large language models (LLM) and multi-modality large language models

(MLLM). The hallucination problem means LLM gives wrong answer for the user query. We

show that the ID but wrongly-classified samples actually behaves similar to the OOD samples

in Chapter 5. Therefore, how to detect the cases that LLM is making mistakes is similar to

OOD detection. Determining when a large language model is likely to make mistakes can help

it self-correct or output the correct answer under human guidance.
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